Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nature ; 563(7730): 270-274, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30401837

RESUMO

The 5-HT3A serotonin receptor1, a cationic pentameric ligand-gated ion channel (pLGIC), is the clinical target for management of nausea and vomiting associated with radiation and chemotherapies2. Upon binding, serotonin induces a global conformational change that encompasses the ligand-binding extracellular domain (ECD), the transmembrane domain (TMD) and the intracellular domain (ICD), the molecular details of which are unclear. Here we present two serotonin-bound structures of the full-length 5-HT3A receptor in distinct conformations at 3.32 Å and 3.89 Å resolution that reveal the mechanism underlying channel activation. In comparison to the apo 5-HT3A receptor, serotonin-bound states underwent a large twisting motion in the ECD and TMD, leading to the opening of a 165 Å permeation pathway. Notably, this motion results in the creation of lateral portals for ion permeation at the interface of the TMD and ICD. Combined with molecular dynamics simulations, these structures provide novel insights into conformational coupling across domains and functional modulation.


Assuntos
Microscopia Crioeletrônica , Receptores 5-HT3 de Serotonina/química , Receptores 5-HT3 de Serotonina/ultraestrutura , Serotonina/química , Serotonina/metabolismo , Animais , Apoproteínas/química , Apoproteínas/metabolismo , Apoproteínas/ultraestrutura , Sítios de Ligação , Condutividade Elétrica , Feminino , Ativação do Canal Iônico , Transporte de Íons , Camundongos , Simulação de Dinâmica Molecular , Movimento , Conformação Proteica , Receptores 5-HT3 de Serotonina/genética , Receptores 5-HT3 de Serotonina/metabolismo , Xenopus laevis
2.
Antimicrob Agents Chemother ; 66(12): e0105622, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36445139

RESUMO

The F1FO-ATP synthase is required for the viability of tuberculosis (TB) and nontuberculous mycobacteria (NTM) and has been validated as a drug target. Here, we present the cryo-EM structures of the Mycobacterium smegmatis F1-ATPase and the F1FO-ATP synthase with different nucleotide occupation within the catalytic sites and visualize critical elements for latent ATP hydrolysis and efficient ATP synthesis. Mutational studies reveal that the extended C-terminal domain (αCTD) of subunit α is the main element for the self-inhibition mechanism of ATP hydrolysis for TB and NTM bacteria. Rotational studies indicate that the transition between the inhibition state by the αCTD and the active state is a rapid process. We demonstrate that the unique mycobacterial γ-loop and subunit δ are critical elements required for ATP formation. The data underline that these mycobacterium-specific elements of α, γ, and δ are attractive targets, providing a platform for the discovery of species-specific inhibitors.


Assuntos
Mycobacterium tuberculosis , Mycobacterium , Tuberculose , Humanos , Micobactérias não Tuberculosas , Hidrólise , Trifosfato de Adenosina
3.
J Biol Chem ; 290(6): 3183-96, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25505269

RESUMO

Eukaryotic V1VO-ATPases hydrolyze ATP in the V1 domain coupled to ion pumping in VO. A unique mode of regulation of V-ATPases is the reversible disassembly of V1 and VO, which reduces ATPase activity and causes silencing of ion conduction. The subunits D and F are proposed to be key in these enzymatic processes. Here, we describe the structures of two conformations of the subunit DF assembly of Saccharomyces cerevisiae (ScDF) V-ATPase at 3.1 Å resolution. Subunit D (ScD) consists of a long pair of α-helices connected by a short helix ((79)IGYQVQE(85)) as well as a ß-hairpin region, which is flanked by two flexible loops. The long pair of helices is composed of the N-terminal α-helix and the C-terminal helix, showing structural alterations in the two ScDF structures. The entire subunit F (ScF) consists of an N-terminal domain of four ß-strands (ß1-ß4) connected by four α-helices (α1-α4). α1 and ß2 are connected via the loop (26)GQITPETQEK(35), which is unique in eukaryotic V-ATPases. Adjacent to the N-terminal domain is a flexible loop, followed by a C-terminal α-helix (α5). A perpendicular and extended conformation of helix α5 was observed in the two crystal structures and in solution x-ray scattering experiments, respectively. Fitted into the nucleotide-bound A3B3 structure of the related A-ATP synthase from Enterococcus hirae, the arrangements of the ScDF molecules reflect their central function in ATPase-coupled ion conduction. Furthermore, the flexibility of the terminal helices of both subunits as well as the loop (26)GQITPETQEK(35) provides information about the regulatory step of reversible V1VO disassembly.


Assuntos
Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , ATPases Vacuolares Próton-Translocadoras/química , Sequência de Aminoácidos , Cristalografia por Raios X , Dados de Sequência Molecular , Multimerização Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas/química
4.
J Biol Chem ; 288(17): 11930-9, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23476018

RESUMO

Subunit F of V-ATPases is proposed to undergo structural alterations during catalysis and reversible dissociation from the V1VO complex. Recently, we determined the low resolution structure of F from Saccharomyces cerevisiae V-ATPase, showing an N-terminal egg shape, connected to a C-terminal hook-like segment via a linker region. To understand the mechanistic role of subunit F of S. cerevisiae V-ATPase, composed of 118 amino acids, the crystal structure of the major part of F, F(1-94), was solved at 2.3 Å resolution. The structural features were confirmed by solution NMR spectroscopy using the entire F subunit. The eukaryotic F subunit consists of the N-terminal F(1-94) domain with four-parallel ß-strands, which are intermittently surrounded by four α-helices, and the C terminus, including the α5-helix encompassing residues 103 to 113. Two loops (26)GQITPETQEK(35) and (60)ERDDI(64) are described to be essential in mechanistic processes of the V-ATPase enzyme. The (26)GQITPETQEK(35) loop becomes exposed when fitted into the recently determined EM structure of the yeast V1VO-ATPase. A mechanism is proposed in which the (26)GQITPETQEK(35) loop of subunit F and the flexible C-terminal domain of subunit H move in proximity, leading to an inhibitory effect of ATPase activity in V1. Subunits D and F are demonstrated to interact with subunit d. Together with NMR dynamics, the role of subunit F has been discussed in the light of its interactions in the processes of reversible disassembly and ATP hydrolysis of V-ATPases by transmitting movements of subunit d and H of the VO and V1 sector, respectively.


Assuntos
Subunidades Proteicas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , ATPases Vacuolares Próton-Translocadoras/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Cristalografia por Raios X , Hidrólise , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo
5.
Nat Commun ; 15(1): 2967, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580666

RESUMO

GLIC, a proton-activated prokaryotic ligand-gated ion channel, served as a model system for understanding the eukaryotic counterparts due to their structural and functional similarities. Despite extensive studies conducted on GLIC, the molecular mechanism of channel gating in the lipid environment requires further investigation. Here, we present the cryo-EM structures of nanodisc-reconstituted GLIC at neutral and acidic pH in the resolution range of 2.6 - 3.4 Å. In our apo state at pH 7.5, the extracellular domain (ECD) displays conformational variations compared to the existing apo structures. At pH 4.0, three distinct conformational states (C1, C2 and O states) are identified. The protonated structures exhibit a compacted and counter-clockwise rotated ECD compared with our apo state. A gradual widening of the pore in the TMD is observed upon reducing the pH, with the widest pore in O state, accompanied by several layers of water pentagons. The pore radius and molecular dynamics (MD) simulations suggest that the O state represents an open conductive state. We also observe state-dependent interactions between several lipids and proteins that may be involved in the regulation of channel gating. Our results provide comprehensive insights into the importance of lipids impact on gating.


Assuntos
Canais Iônicos de Abertura Ativada por Ligante , Canais Iônicos de Abertura Ativada por Ligante/química , Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Ativação do Canal Iônico/fisiologia , Microscopia Crioeletrônica , Prótons , Lipídeos , Proteínas de Bactérias/metabolismo
6.
Front Microbiol ; 15: 1324188, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873137

RESUMO

Introduction: Biological nitrogen fixation (BNF), an unparalleled metabolic novelty among living microorganisms on earth, globally contributes ~88-101 Tg N year-1 to natural ecosystems, ~56% sourced from symbiotic BNF while ~22-45% derived from free-living nitrogen fixers (FLNF). The success of symbiotic BNF is largely dependent on its interaction with host-plant, however ubiquitous environmental heterotrophic FLNFs face many limitations in their immediate ecological niches to sustain unhindered BNF. The autotrophic FLNFs like cyanobacteria and oceanic heterotrophic diazotrophs have been well studied about their contrivances acclimated/adapted by these organisms to outwit the environmental constraints for functional diazotrophy. However, FLNF heterotrophs face more adversity in executing BNF under stressful estuarine/marine/aquatic habitats. Methods: In this study a large-scale cultivation-dependent investigation was accomplished with 190 NCBI accessioned and 45 non-accessioned heterotrophic FLNF cultivable bacterial isolates (total 235) from halophilic estuarine intertidal mangrove niches of Indian Sundarbans, a Ramsar site and UNESCO proclaimed World Heritage Site. Assuming ~1% culturability of the microbial community, the respective niches were also studied for representing actual bacterial diversity via cultivation-independent next-generation sequencing of V3-V4 rRNA regions. Results: Both the studies revealed a higher abundance of culturable Gammaproteobacteria followed by Firmicutes, the majority of 235 FLNFs studied belonging to these two classes. The FLNFs displayed comparable selection potential in media for free nitrogen fixers and iron-oxidizing bacteria, linking diazotrophy with iron oxidation, siderophore production, phosphorus solubilization, phosphorus uptake and accumulation as well as denitrification. Discussion: This observation validated the hypothesis that under extreme estuarine mangrove niches, diazotrophs are naturally selected as a specialized multidimensional entity, to expedite BNF and survive. Earlier metagenome data from mangrove niches demonstrated a microbial metabolic coupling among C, N, P, S, and Fe cycling in mangrove sediments, as an adaptive trait, evident with the co-abundant respective functional genes, which corroborates our findings in cultivation mode for multiple interrelated metabolic potential facilitating BNF in a challenging intertidal mangrove environment.

7.
Sci Rep ; 14(1): 12952, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839775

RESUMO

To date, degraded mangrove ecosystem restoration accomplished worldwide primarily aligns towards rehabilitation with monotypic plantations, while ecological restoration principles are rarely followed in these interventions. However, researchers admit that most of these initiatives' success rate is not appreciable often. An integrative framework of ecological restoration for degraded mangroves where site-specific observations could be scientifically rationalized, with co-located reference pristine mangroves as the target ecosystem to achieve is currently distinctively lacking. Through this experimental scale study, we studied the suitability of site-specific strategies to ecologically restore degraded mangrove patches vis-à-vis the conventional mono-species plantations in a highly vulnerable mangrove ecosystem in Indian Sundarbans. This comprehensive restoration framework was trialed in small discrete degraded mangrove patches spanning ~ 65 ha. Site-specific key restoration components applied are statistically validated through RDA analyses and Bayesian t-tests. 25 quantifiable metrics evaluate the restoration success of a ~ 3 ha degraded mangrove patch with Ridgeline distribution, Kolmogorov-Smirnov (K-S) tests, and Mahalanobis Distance (D2) measure to prove the site's near-equivalence to pristine reference in multiple ecosystem attributes. This restoration intervention irrevocably establishes the greater potential of this framework in the recovery of ecosystem functions and self-sustenance compared to that of predominant monoculture practices for vulnerable mangroves.


Assuntos
Conservação dos Recursos Naturais , Áreas Alagadas , Índia , Conservação dos Recursos Naturais/métodos , Ecossistema , Recuperação e Remediação Ambiental/métodos , Projetos Piloto , Teorema de Bayes
8.
Antimicrob Agents Chemother ; 57(1): 168-76, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23089752

RESUMO

The subunit ε of bacterial F(1)F(O) ATP synthases plays an important regulatory role in coupling and catalysis via conformational transitions of its C-terminal domain. Here we present the first low-resolution solution structure of ε of Mycobacterium tuberculosis (Mtε) F(1)F(O) ATP synthase and the nuclear magnetic resonance (NMR) structure of its C-terminal segment (Mtε(103-120)). Mtε is significantly shorter (61.6 Å) than forms of the subunit in other bacteria, reflecting a shorter C-terminal sequence, proposed to be important in coupling processes via the catalytic ß subunit. The C-terminal segment displays an α-helical structure and a highly positive surface charge due to the presence of arginine residues. Using NMR spectroscopy, fluorescence spectroscopy, and mutagenesis, we demonstrate that the new tuberculosis (TB) drug candidate TMC207, proposed to bind to the proton translocating c-ring, also binds to Mtε. A model for the interaction of TMC207 with both ε and the c-ring is presented, suggesting that TMC207 forms a wedge between the two rotating subunits by interacting with the residues W15 and F50 of ε and the c-ring, respectively. T19 and R37 of ε provide the necessary polar interactions with the drug molecule. This new model of the mechanism of TMC207 provides the basis for the design of new drugs targeting the F(1)F(O) ATP synthase in M. tuberculosis.


Assuntos
Antituberculosos/química , Proteínas de Bactérias/antagonistas & inibidores , ATPases Mitocondriais Próton-Translocadoras/antagonistas & inibidores , Subunidades Proteicas/antagonistas & inibidores , Quinolinas/química , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Diarilquinolinas , Escherichia coli/genética , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/genética , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Ressonância Magnética Nuclear Biomolecular , Subunidades Proteicas/química , Subunidades Proteicas/genética , Prótons , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Alinhamento de Sequência , Espectrometria de Fluorescência
9.
Front Plant Sci ; 14: 1291805, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38293624

RESUMO

Bibenzyl derivatives comprising two benzene rings are secondary plant metabolites with significant therapeutic value. To date, bibenzyl derivatives in the Plant kingdom have been primarily identified in bryophytes, orchids, and Cannabis sativa. The metabolic cost investment by plant species for the synthesis of these bioactive secondary metabolites is rationalized as a mechanism of plant defense in response to oxidative stress induced by biotic/abiotic factors. Bibenzyl derivatives are synthesized from core phenylpropanoid biosynthetic pathway offshoots in plant species. Mangrove and mangrove associate species thrive under extreme ecological niches such as a hypersaline intertidal environment through unique adaptive and acclimative characteristics, primarily involving osmotic adjustments followed by oxidative stress abatement. Several primary/secondary bioactive metabolites in mangrove species have been identified as components of salinity stress adaptation/acclimation/mitigation; however, the existence of a bibenzyl scaffold in mangrove species functioning in this context remains unknown. We here report the confirmed detection of a core bibenzyl scaffold from extensive gas chromatography-mass spectrometry and gas chromatography-flame ionization detection analyses of 28 mangrove and mangrove associate species from the Indian Sundarbans. We speculate that the common presence of this bibenzyl core molecule in 28 mangrove and associate species may be related to its synthesis via branches of the phenylpropanoid biosynthetic pathway induced under high salinity, which functions to detoxify reactive oxygen species as a protection for the maintenance of plant metabolic processes. This finding reveals a new eco-physiological functional role of bibenzyls in unique mangrove ecosystem.

10.
PNAS Nexus ; 2(7): pgad235, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37529551

RESUMO

Iron is an essential element involved in various metabolic processes. The ferritin family of proteins forms nanocage assembly and is involved in iron oxidation, storage, and mineralization. Although several structures of human ferritins and bacterioferritins have been solved, there is still no complete structure that shows both the trapped Fe-biomineral cluster and the nanocage. Furthermore, whereas the mechanism of iron trafficking has been explained using various approaches, structural details on the biomineralization process (i.e. the formation of the mineral itself) are generally lacking. Here, we report the cryo-electron microscopy (cryo-EM) structures of apoform and biomineral bound form (holoforms) of the Streptomyces coelicolor bacterioferritin (ScBfr) nanocage and the subunit crystal structure. The holoforms show different stages of Fe-biomineral accumulation inside the nanocage, in which the connections exist in two of the fourfold channels of the nanocage between the C-terminal of the ScBfr monomers and the Fe-biomineral cluster. The mutation and truncation of the bacterioferritin residues involved in these connections significantly reduced the iron and phosphate binding in comparison with those of the wild type and together explain the underlying mechanism. Collectively, our results represent a prototype for the bacterioferritin nanocage, which reveals insight into its biomineralization and the potential channel for bacterioferritin-associated iron trafficking.

11.
Biochim Biophys Acta ; 1808(1): 360-8, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20840841

RESUMO

Vacuolar ATPases use the energy derived from ATP hydrolysis, catalyzed in the A(3)B(3) sector of the V(1) ATPase to pump protons via the membrane-embedded V(O) sector. The energy coupling between the two sectors occurs via the so-called central stalk, to which subunit F does belong. Here we present the first low resolution structure of recombinant subunit F (Vma7p) of a eukaryotic V-ATPase from Saccharomyces cerevisiae, analyzed by small angle X-ray scattering (SAXS). The protein is divided into a 5.5nm long egg-like shaped region, connected via a 1.5nm linker to a hook-like segment at one end. Circular dichroism spectroscopy revealed that subunit F comprises of 43% α-helix, 32% ß-sheet and a 25% random coil arrangement. To determine the localization of the N- and C-termini in the protein, the C-terminal truncated form of F, F(1-94) was produced and analyzed by SAXS. Comparison of the F(1-94) shape with the one of subunit F showed the missing hook-like region in F(1-94), supported by the decreased D(max) value of F(1-94) (7.0nm), and indicating that the hook-like region consists of the C-terminal residues. The NMR solution structure of the C-terminal peptide, F(90-116), was solved, displaying an α-helical region between residues 103 and 113. The F(90-116) solution structure fitted well in the hook-like region of subunit F. Finally, the arrangement of subunit F within the V(1) ATPase is discussed.


Assuntos
Proteínas de Saccharomyces cerevisiae/química , ATPases Vacuolares Próton-Translocadoras/química , Biofísica/métodos , Dicroísmo Circular , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Modelos Estatísticos , Peptídeos/química , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/enzimologia , Espalhamento de Radiação , Espalhamento a Baixo Ângulo , Raios X
12.
Artigo em Inglês | MEDLINE | ID: mdl-22949193

RESUMO

V-ATPases are very complex multi-subunit enzymes which function as proton-pumping rotary nanomotors. The rotary and coupling subunit F (F(1-94)) was crystallized by the hanging-drop vapour-diffusion method. The native crystals diffracted to a resolution of 2.64 Å and belonged to space group C222(1), with unit-cell parameters a = 47.21, b = 160.26, c = 102.49 Å. The selenomethionyl form of the F(1-94) I69M mutant diffracted to a resolution of 2.3 Å and belonged to space group C222(1), with unit-cell parameters a = 47.22, b = 160.83, c = 102.74 Å. Initial phasing and model building suggested the presence of four molecules in the asymmetric unit.


Assuntos
Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , ATPases Vacuolares Próton-Translocadoras/química , Cristalização , Cristalografia por Raios X
13.
J Microencapsul ; 29(7): 666-76, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22545676

RESUMO

Human immunodeficiency viruses (HIV) hide themselves in macrophages at the early stage of infection. Delivering drug in a sustained manner from polymeric nanoparticles in those cells could control the disease effectively. The study was intended to develop poly(d,l-lactic-co-glycolic acid)-based nanoparticles containing didanosine and to observe their uptake by macrophages in vitro. Various physicochemical evaluations related to nanoparticles, such as drug-excipient interaction, surface morphology, particle size, zeta potential, polydispersity index, drug loading, in vitro drug release and nanoparticle-uptake by macrophages in vitro were determined. Homogenising speeds and drug-polymer ratio varied drug loading and polydispersity index of nanoparticles, providing sustained drug release. Dimethyl sulphoxide/polyethylene glycol improved drug loading predominantly. Nanoparticle-uptake by macrophages was concentration dependent. Experimental nanoparticles successfully transported didanosine to macrophages in vitro, suggesting reduction of dose, thus minimising toxicity and side effects. Developed nanoparticle may control HIV infection effectively at an early stage.


Assuntos
Fármacos Anti-HIV , Didanosina , Infecções por HIV/tratamento farmacológico , HIV , Macrófagos Peritoneais/metabolismo , Nanopartículas/química , Animais , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacocinética , Fármacos Anti-HIV/farmacologia , Células Cultivadas , Preparações de Ação Retardada , Didanosina/química , Didanosina/farmacocinética , Didanosina/farmacologia , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Ácido Láctico/química , Ácido Láctico/farmacocinética , Ácido Láctico/farmacologia , Macrófagos Peritoneais/citologia , Camundongos , Ácido Poliglicólico/química , Ácido Poliglicólico/farmacocinética , Ácido Poliglicólico/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
14.
Cell Rep ; 39(9): 110890, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35649372

RESUMO

The membrane-bound AAA protease FtsH is the key player controlling protein quality in bacteria. Two single-pass membrane proteins, HflK and HflC, interact with FtsH to modulate its proteolytic activity. Here, we present structure of the entire FtsH-HflKC complex, comprising 12 copies of both HflK and HflC, all of which interact reciprocally to form a cage, as well as four FtsH hexamers with periplasmic domains and transmembrane helices enclosed inside the cage and cytoplasmic domains situated at the base of the cage. FtsH K61/D62/S63 in the ß2-ß3 loop in the periplasmic domain directly interact with HflK, contributing to complex formation. Pull-down and in vivo enzymatic activity assays validate the importance of the interacting interface for FtsH-HflKC complex formation. Structural comparison with the substrate-bound human m-AAA protease AFG3L2 offers implications for the HflKC cage in modulating substrate access to FtsH. Together, our findings provide a better understanding of FtsH-type AAA protease holoenzyme assembly and regulation.


Assuntos
Proteínas de Escherichia coli , Proteases Dependentes de ATP/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Bactérias/metabolismo , Microscopia Crioeletrônica , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Humanos
15.
Nat Commun ; 13(1): 4862, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35982060

RESUMO

Nociception and motor coordination are critically governed by glycine receptor (GlyR) function at inhibitory synapses. Consequentially, GlyRs are attractive targets in the management of chronic pain and in the treatment of several neurological disorders. High-resolution mechanistic details of GlyR function and its modulation are just emerging. While it has been known that cannabinoids such as Δ9-tetrahydrocannabinol (THC), the principal psychoactive constituent in marijuana, potentiate GlyR in the therapeutically relevant concentration range, the molecular mechanism underlying this effect is still not understood. Here, we present Cryo-EM structures of full-length GlyR reconstituted into lipid nanodisc in complex with THC under varying concentrations of glycine. The GlyR-THC complexes are captured in multiple conformational states that reveal the basis for THC-mediated potentiation, manifested as different extents of opening at the level of the channel pore. Taken together, these structural findings, combined with molecular dynamics simulations and functional analysis, provide insights into the potential THC binding site and the allosteric coupling to the channel pore.


Assuntos
Canabinoides , Receptores de Glicina , Canabinoides/farmacologia , Dronabinol/farmacologia , Glicina/farmacologia , Lipídeos , Receptores de Glicina/metabolismo
16.
Methods Enzymol ; 652: 81-103, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34059291

RESUMO

Pentameric ligand-gated ion channels (pLGICs) are central players in synaptic neurotransmission and are targets to a range of drugs used to treat neurological disorders and pain. pLGICs are intrinsically dynamic membrane proteins that upon stimulation by neurotransmitters, undergo global conformational changes across multiple domains spanning a distance of over 165Å. The inter-domain flexibility, a feature crucial for their function as signal transducers in chemical synapses, has been problematic in the efforts toward determining high-resolution structures. Earlier structural studies tackled this issue with a variety of strategies that included partial truncation of flexible domains and the use of antibodies and small-molecule inhibitors to restrict domain movement. With the recent advances in cryo-electron microscopy and single-particle analysis, many of these limitations have been overcome. Here, we describe the methods used in the recombinant expression and purification of full-length constructs of two members of the pentameric ligand-gated ion channel family and the approaches used for capturing multiple conformations in cryo-EM imaging.


Assuntos
Canais Iônicos de Abertura Ativada por Ligante , Microscopia Crioeletrônica , Canais Iônicos de Abertura Ativada por Ligante/genética , Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Sinapses , Transmissão Sináptica
17.
Elife ; 92020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33063666

RESUMO

Serotonin receptors (5-HT3AR) play a crucial role in regulating gut movement, and are the principal target of setrons, a class of high-affinity competitive antagonists, used in the management of nausea and vomiting associated with radiation and chemotherapies. Structural insights into setron-binding poses and their inhibitory mechanisms are just beginning to emerge. Here, we present high-resolution cryo-EM structures of full-length 5-HT3AR in complex with palonosetron, ondansetron, and alosetron. Molecular dynamic simulations of these structures embedded in a fully-hydrated lipid environment assessed the stability of ligand-binding poses and drug-target interactions over time. Together with simulation results of apo- and serotonin-bound 5-HT3AR, the study reveals a distinct interaction fingerprint between the various setrons and binding-pocket residues that may underlie their diverse affinities. In addition, varying degrees of conformational change in the setron-5-HT3AR structures, throughout the channel and particularly along the channel activation pathway, suggests a novel mechanism of competitive inhibition.


Serotonin is perhaps best known as a chemical messenger in the brain, where it regulates mood, appetite and sleep. But as a hormone, serotonin works in other parts of the body too. Serotonin is predominantly made in the gut, where it binds receptor proteins that help to regulate the movement of substances through the gastrointestinal tract, aiding digestion. However, a surge in serotonin release in the gut induces vomiting and nausea, which commonly happens as a side effect of treating cancer with radiotherapy and chemotherapy. Anti-nausea drugs used to manage and prevent the severe nausea and vomiting experienced by cancer patients are therefore designed to target serotonin receptors in the gut. These drugs, called setrons, work by binding to serotonin receptors before serotonin does, essentially neutralising the effect of any surplus serotonin. Although they generally target serotonin receptors in the same way, some setrons are more efficient than others and can provide longer lasting relief. Clarifying exactly how each drug interacts with its target receptor might help to explain their differential effects. Basak et al. used a technique called cryo-electron microscopy to examine the interactions between three common anti-nausea drugs (palonosetron, ondansetron and alosetron) and one type of serotonin receptor, 5-HT3AR. The experiments showed that each drug changed the shape of 5-HT3AR, thereby inhibiting its activity to varying degrees. Further analysis identified a distinct 'interaction fingerprint' for the three setron drugs studied, showing which of the receptors' subunits each drug binds to. Simulations of their interactions also showed that water molecules play a crucial role in the process, exposing the binding pocket on the receptor's surface where the drugs attach. This work provides a structural blueprint of the interactions between anti-nausea drugs and serotonin receptors. The structures could guide the development of new and improved therapies to treat nausea and vomiting brought on by cancer treatments.


Assuntos
Receptores 5-HT3 de Serotonina/química , Antagonistas da Serotonina/farmacologia , Animais , Sítios de Ligação , Ligação Competitiva , Microscopia Crioeletrônica , Feminino , Humanos , Ligantes , Camundongos , Simulação de Dinâmica Molecular , Oócitos/química , Ligação Proteica , Conformação Proteica , Serotonina/química , Xenopus laevis
18.
Nat Commun ; 11(1): 3752, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32719334

RESUMO

Glycinergic synapses play a central role in motor control and pain processing in the central nervous system. Glycine receptors (GlyRs) are key players in mediating fast inhibitory neurotransmission at these synapses. While previous high-resolution structures have provided insights into the molecular architecture of GlyR, several mechanistic questions pertaining to channel function are still unanswered. Here, we present Cryo-EM structures of the full-length GlyR protein complex reconstituted into lipid nanodiscs that are captured in the unliganded (closed), glycine-bound (open and desensitized), and allosteric modulator-bound conformations. A comparison of these states reveals global conformational changes underlying GlyR channel gating and modulation. The functional state assignments were validated by molecular dynamics simulations, and the observed permeation events are in agreement with the anion selectivity and conductance of GlyR. These studies provide the structural basis for gating, ion selectivity, and single-channel conductance properties of GlyR in a lipid environment.


Assuntos
Ativação do Canal Iônico , Lipídeos/química , Nanopartículas/química , Receptores de Glicina/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Regulação Alostérica , Animais , Sítios de Ligação , Glicina/metabolismo , Simulação de Dinâmica Molecular , Neurotransmissores/metabolismo , Conformação Proteica , Receptores de Glicina/ultraestrutura , Xenopus , Proteínas de Peixe-Zebra/ultraestrutura
19.
Sci Rep ; 10(1): 6683, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32317761

RESUMO

Sundarbans mangrove forest, the world's largest continuous mangrove forests expanding across India and Bangladesh, in recent times, is immensely threatened by degradation stress due to natural stressors and anthropogenic disturbances. The degradation across the 19 mangrove forests in Indian Sundarbans was evaluated by eight environmental criteria typical to mangrove ecosystem. In an attempt to find competent predictors for mangrove ecosystem degradation, key eco-physiological resilience trait complex specific for mangroves from 4922 individuals for physiological analyses with gene expression and 603 individuals for leaf tissue distributions from 16 mangroves and 15 associate species was assessed along the degradation gradient. The degradation data was apparently categorized into four and CDFA discriminates 97% of the eco-physiological resilience data into corresponding four groups. Predictive Bayesian regression models and mixed effects models indicate osmolyte accumulation and thickness of water storage tissue as primary predictors of each of the degradation criteria that appraise the degradation status of mangrove ecosystem. RDA analyses well represented response variables of degradation explained by explanatory resilience variables. We hypothesize that with the help of our predictive models the policy makers could trace even the cryptic process of mangrove degradation and save the respective forests in time by proposing appropriate action plans.


Assuntos
Conservação dos Recursos Naturais , Previsões , Áreas Alagadas , Teorema de Bayes , Geografia , Índia , Modelos Lineares , Modelos Teóricos , Análise de Regressão
20.
Chem Biodivers ; 6(12): 2263-74, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20020458

RESUMO

The genus Lantana has many species complexes, and L. camara is one of the aggressive alien weedy species complexes; species delimitation in these complexes is a nightmare for taxonomists. We examined the diversity in the chemical composition of foliar essential oils among morphotypes of Lantana species complexes inhabiting the same ecological gradient, and its taxonomic and ecological significance. The yields of essential oils varied from 0.1 to 0.79% in foliar hydrodistillates of eleven morphotypes, and a total of 39 chemical constituents were detected by GC/MS. The quantitative and qualitative variability in the composition of essential oils among morphotypes was very high, and hence they represent chemotypes. The diversity observed in the composition of essential oils appears to be of genetic origin and thus of taxonomic value. The formation of distinct clusters and sub-clusters at high distance cluster combine values also substantiates that the patterns of distribution of chemical constituents among morphotypes can be used in delimiting species and infraspecific taxa within the species complexes. The presence of beta-caryophyllene and other such compounds, which are known to prevent herbivory, in morphotypes of Lantana species complexes suggest that these compounds may provide selective advantage to Lantana over native species in the invasion of new and disturbed habitats.


Assuntos
Lantana/química , Óleos Voláteis/química , Análise por Conglomerados , Cromatografia Gasosa-Espectrometria de Massas , Lantana/classificação , Sesquiterpenos Policíclicos , Sesquiterpenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA