Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(10): 3237-3242, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38437641

RESUMO

Traditional semiconductor quantum dots of groups II-VI are key ingredients of next-generation display technology. Yet, the majority of them contain toxic heavy-metal elements, thus calling for alternative light-emitting materials. Herein, we have explored three novel categories of multicomponent compounds, namely, tetragonal II-III2-VI4 porous ternary compounds, cubic I2-II3-VI4 ternary compounds, and cubic I-II-III3-V4 quaternary compounds. This is achieved by judicious introduction of a "super atom" perspective and concurrently varying the solid-state lattice packing of involved super atoms or the population of surrounding counter cations. Based on first-principles calculations of 392 candidate materials with designed crystal structures, 53 highly stable materials have been screened. Strikingly, 34 of them are direct-bandgap semiconductors with emitting wavelengths covering the near-infrared and visible-light regions. This work provides a comprehensive database of highly efficient light-emitting materials, which may be of interest for a broad field of optoelectronic applications.

2.
Nano Lett ; 23(8): 3239-3244, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37022343

RESUMO

Environmentally friendly colloidal quantum dots (QDs) of groups III-V are in high demand for next-generation high-performance light-emitting devices for display and lighting, yet many of them (e.g., GaP) suffer from inefficient band-edge emission due to the indirect bandgap nature of their parent materials. Herein, we theoretically demonstrate that efficient band-edge emission can be activated at a critical tensile strain γc enabled by the capping shell when forming a core/shell architecture. Before γc is reached, the emission edge is dominated by dense low-intensity exciton states with a vanishing oscillator strength and a long radiative lifetime. After γc is crossed, the emission edge is dominated by high-intensity bright exciton states with a large oscillator strength and a radiative lifetime that is shorter by a few orders of magnitude. This work provides a novel strategy for realizing efficient band-edge emission of indirect semiconductor QDs via shell engineering, which is potentially implemented employing the well-established colloidal QD synthesis technique.

3.
Nano Lett ; 23(10): 4648-4653, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37167231

RESUMO

Colloidal quantum dots (QDs) of groups II-VI and III-V are key ingredients for next-generation light-emitting devices. Yet, many of them are heavy-element-containing or indirect bandgap, causing limited choice of environmental friendly efficient light-emitting materials. Herein, we resolve this issue by exploring potential derivatives of the parent semiconductors, thus expanding the material space. The key to success is the discovery of a principle for designing those materials, namely, cation stabilizing charged cluster network. Guided by this principle, three novel categories of cubic materials have been predicted, namely, porous binary compounds, I-II-VI ternary compounds, and I-II-III-V quaternary compounds. Using first-principles calculations, 65 realistic highly stable candidate materials have been theoretically screened. Their structural and compositional diversity enables a wide tunability of emitting wavelength from far-infrared to ultraviolet region. This work enriches the family of tetrahedral semiconductors and derivatives, which may be of interest for a broad field of optoelectronic applications.

4.
Waste Manag Res ; 42(8): 595-607, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38366790

RESUMO

This study introduces an innovative approach for enhancing oil-water emulsion separation using a polyethersulfone (PES) membrane embedded with a nanocomposite of graphene oxide (GO) and silver oxide (AgO). The composite membrane, incorporating PES and polyvinyl chloride (PVC), demonstrates improved hydrophilicity, structural integrity and resistance to fouling. Physicochemical characterization confirms successful integration of GO and AgO, leading to increased tensile strength, porosity and hydrophilicity. Filtration tests reveal substantial improvements in separating various oils from contaminated wastewater, with the composite membrane exhibiting superior efficiency and reusability compared to pristine PES membranes. This research contributes to the development of environmentally friendly oil-water separation methods with broad industrial applications.


Assuntos
Emulsões , Filtração , Grafite , Membranas Artificiais , Nanocompostos , Polímeros , Sulfonas , Grafite/química , Nanocompostos/química , Sulfonas/química , Polímeros/química , Filtração/métodos , Compostos de Prata/química , Óleos/química , Águas Residuárias/química , Água/química , Interações Hidrofóbicas e Hidrofílicas , Óxidos
5.
Waste Manag Res ; 42(8): 608-617, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38353237

RESUMO

This study addresses the urgent issue of water pollution caused by iron (Fe) and manganese (Mn) ions. It introduces an innovative approach using graphene oxide (GO) and GO-decorated polyethersulphone (PES) membranes to efficiently remove these ions from contaminated water. The process involves integrating GO into PES membranes to enhance their adsorption capacity. Characterization techniques, including scanning electron microscopy, Fourier-transform infrared, and contact angle measurements, were used to assess structural and surface properties. The modified membranes demonstrated significantly improved adsorption compared to pristine PES. Notably, they achieved over 94% removal of Mn2+ and 93.6% of Fe2+ in the first filtration cycle for water with an initial concentration of 100 ppm. Continuous filtration for up to five cycles maintained removal rates above 60%. This research advances water purification materials, offering a promising solution for heavy metal ion removal. GO-decorated PES membranes may find application in large-scale water treatment, addressing environmental and public health concerns.


Assuntos
Grafite , Ferro , Manganês , Membranas Artificiais , Polímeros , Sulfonas , Poluentes Químicos da Água , Purificação da Água , Grafite/química , Polímeros/química , Manganês/química , Ferro/química , Purificação da Água/métodos , Adsorção , Sulfonas/química , Filtração/métodos
6.
Environ Res ; 216(Pt 3): 114712, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36334832

RESUMO

The use of photocatalysts for acquiring direct photon energy from sunlight is a promising way to clean the environment, particularly the remediation of contaminants from water. In this work, firstly π-conjugated organic semiconductor configuring benzoselenadiazole, 4-(3,5-bis(trifluoromethyl) phenyl)-7-(5'-hexyl-[2,2'-bithiophen]-5-yl)-benzo [c] (Kümmerer, 2009; Chen et al., 2018; Randeep et al., 201) selenadiazole, abbreviated as (RTh-Se-F), was synthesized. The designed RTh-Se-F with an extended π-conjugation showed good optical properties in the visible region and estimated a low optical band gap of ∼2.02 eV . The molecular orbitals i.e. HOMO (-5.33 eV) and LUMO (-3.31 eV) for RTh-Se-F organic semiconductor were suitably aligned to energy levels of (Madhavan et al., 2010Madhavan et al., 2010)-Phenyl-C71-butyric acid methyl esters (PC71BM) which resulted in the broadening of absorption and covering of entire visible region. RTh-Se-F was integrated with varied weight percentages (wt %) of PC71BM to obtain bulk heterojunction (BHJ) and applied as efficient visible light driven BHJ photocatalyst for an effective oxidation of ibuprofen. RTh-Se-F@PC71BM (1:2, wt %) BHJ photocatalyst showed the superior ibuprofen degradation of ∼93% within 90 min under visible light illumination. The maximum degradation rate by BHJ photocatalyst might be accredited to the broadening of absorption capacity and improved lifetime of photogenerated electron-hole pairs which might be resulted from high absorption properties of RTh-Se-F organic semiconductor.


Assuntos
Ibuprofeno , Luz , Catálise , Oxirredução
7.
Environ Res ; 216(Pt 1): 114407, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36216116

RESUMO

Fungal abetted processes are among the finest approaches for the transformation or degradation and decolorization of dyes in effluents. In this piece of research; biodegradation and metabolic pathways of two toxic dyes Congo Red (CR) and Reactive black 5 (RB5) by two strains of Aspergillus sp. fungus in batch experiments has been investigated. Morphological characteristics of the isolates were observed with both light and electron microscopies. Based on molecular characterization the isolates were identified as Aspergillus flavus and Aspergillus niger. The degradation was also optimized via. operational parameters such as pH, temperature, incubation time, inoculums size, dye concentration, carbon sources and nitrogen sources. Degradation measurements revealed that the isolates effectively degraded 90% and 96% of CR and RB5 respectively. Metabolites were identified with Liquid chromatography-mass spectrometry (LCMS) and degradation pathways of the dyes were proposed. Toxicity assay Phaseolus mungo seeds showed that pure CR and RB5 dyes exhibits significant toxicity whereas fungal treated dye solution resulted in an abatement of the toxicity and cell viability was increased. The results stipulated in this article clearly showed the effectiveness of the isolates on detoxification of CR and RB5 dyes.


Assuntos
Corantes , Águas Residuárias , Corantes/química , Cinética , Biodegradação Ambiental , Vermelho Congo/metabolismo , Aspergillus niger/metabolismo , Compostos Azo/toxicidade , Compostos Azo/metabolismo
8.
Environ Res ; 236(Pt 2): 116793, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37532212

RESUMO

Herein, we present the gas-dependent electrical properties of a reduced graphene oxide nanocomposite. The reduced graphene oxide (rGO) was synthesized by reducing GO with sodium borohydride (NaBH4). As-synthesized rGO was dispersed in DI water containing 1, 2, 3, 4, and 5 wt% polyethylene glycol (PEG) to prepare PEG-rGO supramolecular assemblies. The successful preparation of supramolecular assemblies was verified by their characterization using XRD, FESEM, EDS, TEM, FTIR, and Raman spectroscopy. At room temperature, the gas-dependent electrical properties of these supramolecular assemblies were investigated. The results showed that sensors composed of PEG-rGO supramolecular assemblies performed better against benzene and methanol at 3% and 4% PEG, respectively. However, high selectivity and a wide range of activation energies (∼1.64-1.91 eV) were observed for H2 gas for 4% PEG-modified supramolecular assemblies. The PEG-rGO supramolecular assemblies may be an excellent candidate for constructing ultrahigh-performance gas sensors for a variety of applications due to their high sensitivity and selectivity.


Assuntos
Grafite , Polietilenoglicóis , Polietilenoglicóis/química , Temperatura , Grafite/química
9.
Mikrochim Acta ; 190(7): 258, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37303021

RESUMO

Being a persuasive antibiotic, ciprofloxacin is widely administered to patients and its excessive discharge has generated a keen interest among researchers for its detection in water resources. Therefore, the current work utilizes the virtues of carbon dots synthesized from the leaves of Ocimum sanctum as an economical and convenient bimodal stratagem for the detection of ciprofloxacin via an electrochemical and fluorometric approach. The insight into photostability, size, morphology, and optical studies of the carbon dots was tested to enhance their scope in sensing. The excellent photoluminescence-based excitation-dependent behavior with a quantum yield of 46.7% and non-requirement of any kind of labeled surface variations for amending their fluorescence and electrochemical properties have further supported the utilization of as-prepared carbon dots in trace-level monitoring of ciprofloxacin. The fluorescence emission intensity and peak current were enhanced by many folds via the application of Ocimum sanctum-derived carbon dots. The synergetic effect of carbon dots has possessed a linear relationship between the peak current/emission intensity within the range of 0 to 250 µM of ciprofloxacin and the lowest detection limit value was found to be 0.293 and 0.0822 µM with fluorometric and electrochemical methods, respectively. The sensor demonstrated excellent applicability for the estimation of ciprofloxacin and acts as a high-performance dual sensor for further applications.


Assuntos
Anti-Infecciosos , Ciprofloxacina , Humanos , Ciprofloxacina/farmacologia , Antioxidantes , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Carbono
10.
Nano Lett ; 22(12): 4912-4918, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35639504

RESUMO

A heterojunction with type-II band alignment has long been considered as a prerequisite to realize charge transfer (CT) excitons which are highly appealing for exploration of quantum many-body phenomena, such as excitonic Bose-Einstein condensation and superfluidity. Herein, we have shown CT excitons can be activated via twisting in epitaxially fused heterodimer quantum dot (QD) molecules with quasi type-II band alignment, and even in QD homodimer molecules, therefore breaking the constraint of band alignment. The enabling power of twisting has been revealed. It modulates the orbital spatial localization toward charge separation that is mandatory for CT excitons. Meanwhile, it manifests an effective band offset that counterbalances the distinct many-body effects felt by excitons of different nature, thus ensuring the successful generation of CT excitons. The present work extends the realm of twistroincs into zero-dimensional materials and opens a novel pathway of manipulating the properties of QD materials and closely related molecular systems.

11.
Nano Lett ; 22(9): 3604-3611, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35499490

RESUMO

Environmentally friendly blue-emitting ZnSe quantum dots (QDs) are in high demand for next-generation light-emitting devices. Yet, they suffer longstanding optical instability issues under aerobic conditions. Herein, we have demonstrated the existence of oxidization or hydroxylation on the QD surface when QDs are subjected to oxygen exposure, which potentially introduces highly localized in-gap states. Those states result in a dense number of surface-related, weak-intensity "dark" exciton states at the emission edge. Remarkably, there exists a critical diameter (Dc ≈ 8.5 nm) at which the deepest trap level reaches resonance with the highest occupied molecular orbital state. Beyond this critical diameter, the effects of those trap states are minimized, and the emission edge is dominated by high-intensity, bulk-to-bulk-like "bright" exciton states. The present work provides a novel strategy for designing highly stable QD emitters via size engineering, which are broadly applicable to other closely related QD systems.


Assuntos
Pontos Quânticos
12.
Environ Res ; 212(Pt E): 113559, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35660407

RESUMO

The revolutionary growth in the usage of carbon quantum dots (CQDs) in different areas have ultimately directed their discharge in the environment and further augmented the exposure of agricultural crops to these released particles. Therefore, the aim of current study is to evaluate the uptake, translocation and phytotoxicity of blue emissive CQDs on Allium sativum plant. The genotoxicity and cytotoxicity assessment of CQDs towards Allium sativum roots was estimated as function of three different concentrations. Considering the role of CQDs in promoting seed germination at 50 ppm concentration, a greenhouse experiment was performed to evaluate their effect on plant growth. Systematic investigations have shown the translocation of CQDs and their physiological response in terms of increased shoot length wherein P-CQDs exhibited more accumulation into Allium sativum parts. Our investigations unfold the opportunity to utilize Aegle marmelos fruit derived CQDs as a growth regulator in variety of other food plants.


Assuntos
Alho , Pontos Quânticos , Carbono/toxicidade , Aberrações Cromossômicas/induzido quimicamente , Desenvolvimento Vegetal , Pontos Quânticos/toxicidade
13.
Environ Res ; 215(Pt 2): 114245, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36087770

RESUMO

Herein, we report a simple, low-temperature, ecofriendly synthesis of graphene oxide nanosheets (GONs). Graphite powder was treated with KMnO4 and a concentrated H2SO4/H3PO4 mixture to synthesize GONs. The effects of various reaction conditions such as reaction time, temperature, amounts of cleaving agents (H2SO4/H3PO4), and oxidant (KMnO4) were investigated. The synthesized GONs were examined by various techniques in order to investigate their characteristics. The best results of the synthesized GONs were observed at 35 °C within 10 h of reaction time having 8:2 ratios of H2SO4/H3PO4 acid mixture. The main absorption peak in the UV-vis spectra of GONs was at 258 nm, which is due to the π-π* transition of the atomic CC bonds. The existence of stretching vibrations of C꞊O, O-H, C-H, and C-O in the Fourier transform infrared (FTIR) spectra verified the formation of GONs. Presence of a sharp peak at 2θ = 10° with an interlayer spacing distance of 0.88 nm in the observed XRD pattern revealed that the synthesized GONs were totally oxidized and that the interlayer spacing increased. The morphological investigations confirmed the formation of ultrathin, transparent, curly, and homogenous GONs. The synthesized GONs were applied as an adsorbent for the rapid uptake of four different pesticides viz.; Profenofos, Ethion, Cypermethrin, Thiamethoxam (TMX) from the pesticides spiked water samples. About 86% adsorption of Profenofos + Cypermethrin, and 50% adsorption of ethion and thiamethoxam took place within 20 min in presence of 10 mg GONs. In addition to this, the prepared GONs were tested for the antibacterial activity against four bacterial strains by agar well diffusion method. The synthesized GONs provide a significant inhibition for gram -positive (Bacillus subtilis, and Staphylococcus aureus) and gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacterial strains. Moreover, the radical scavenging activities (RSA) of GONs were also checked and compared with Gallic acid as a standard. The obtained RSA of GONs was 60% in comparison to the 80% as of the standard Gallic acid at 1000 µg/mL concentration.


Assuntos
Grafite , Praguicidas , Adsorção , Ágar/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Escherichia coli , Ácido Gálico , Grafite/química , Organotiofosfatos , Compostos Organotiofosforados , Oxidantes , Pós/farmacologia , Piretrinas , Temperatura , Tiametoxam/farmacologia , Água/química
14.
Environ Res ; 215(Pt 1): 114257, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36084676

RESUMO

In the present work we synthesize nickel oxide nanoparticles (NiO NPs) using Rhododendron arboretum (flower) (RNi), Tinospora cordifolia (stems) (GNi), Corylus jacquemontii (seeds) (CNi), and Nardostachys jatamansi (roots) (NNi) extracts by co-precipitation method. The synthesized NiO NPs were characterized in detail in terms of their morphological, crystalline nature, structural and antiproliferative activity against rat skeletal myoblast (L-6) cell lines. Morphological studies confirmed the formation of nanoparticles, while the structural and compositional characterization revealed the well-crystallinity and high purity of the synthesized nanoparticles. For biological applications and cytotoxicity examinations of the synthesized NPs, the rat skeletal myoblast (L-6) cell lines were subjected to study. By detailed cytotoxic investigations, it was observed that among the four kinds of NiO NPs prepared through different plant extracts, the Tinospora cordifolia (stems) showed strong antiproliferative activity against rat skeletal myoblast (L-6) cell lines and the calculated IC50 was 1.671 mg/mL. The observed antiproliferative activity towards different NiO NPs were in the order of GNi > NNi > RNi > CNi. The present studies demonstrate that simply synthesized NiO can efficiently be used as antiproliferative agents.


Assuntos
Antineoplásicos , Nanopartículas Metálicas , Nanopartículas , Animais , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Níquel/metabolismo , Níquel/toxicidade , Extratos Vegetais/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo
15.
Molecules ; 27(16)2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36014567

RESUMO

The transformation of biowaste into products with added value offers a lucrative role in nation-building. The current work describes the synthesis of highly water-soluble, luminous carbon quantum dots (CQDs) in the size range of 5-10 nm from discarded rice straw. The small spherical CQDs that were formed had outstanding optical and luminescent qualities as well as good photostabilities. By performing quantitative multi-assay tests that included antioxidant activities, in vitro stability and colloidal assay investigations as a function of different CQD concentrations, the biocompatibility of CQDs was evaluated. To clearly visualize the type of surface defects and emissive states in produced CQDs, excitation-dependent fluorescence emission experiments have also been carried out. The "waste-to-wealth" strategy that has been devised is a successful step toward the quick and accurate detection of Cu2+ ion in aqueous conditions. The fluorescence-quenching behavior has specified the concentration dependency of the developed sensor in the range of 50 µM to 10 nM, with detection limit value of 0.31 nM. The main advantage of the current research is that it offers a more environmentally friendly, economically viable and scaled-up synthesis of toxicologically screened CQDs for the quick fluorescence detection of Cu2+ ions and opens up new possibilities in wastewater management.


Assuntos
Carbono , Pontos Quânticos , Corantes Fluorescentes , Íons , Luminescência , Água
16.
Environ Res ; 199: 111369, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34033833

RESUMO

Herein, we report the synthesis and characterizations of Vanadium pentoxide (V2O5) nanorods/graphene oxide (GO) nanocomposite as efficient direct solar light driven photocatalyst for the enhanced degradation of victoria blue (VB) dye. The nanocomposite was synthesized by sonochemical process and characterized using several analytical methods in order to study the structural, morphological, compositional, optical and photocatalytic properties. The X-ray diffraction studies confirmed the orthorhombic structure of V2O5 while the morphological examinations revealed the growth of V2O5 nanorods and 2D GO sheets. Interestingly, the UV studies ratify that the bandgap of the nanocomposite was reduced compared to pure GO and V2O5. Interestingly, the interaction of the V2O5 nanorods with the graphene oxide substrate and its effect on the electronic properties of the combined system, have been examined by means of theoretical calculations, based on the so called Geometry, Frequency, Noncovalent, eXtended Tight Binding (GFN-xTB) method. Studying the photocatalytic behavior of nanocomposite, we observe an almost complete degradation (97.95%) of Victoria Blue (VB) dye under direct sunlight illumination within just 90 min. The outstanding nanocomposite photocatalytic efficiency was due to the excellent transfer of interfacial charge and the suppressed recombination of charge-carrier. The kinetics of the degradation process was also analyzed by calculating the rate constant and half-life time. Finally, a possible mechanism has also been discussed for the degradation process of VB dye using nanocomposite under direct sunlight irradiation.


Assuntos
Nanocompostos , Nanotubos , Catálise , Grafite , Compostos Orgânicos , Luz Solar
17.
Molecules ; 26(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34361772

RESUMO

Herein, we have developed a novel sensing electrode to detect the eco-toxic 4-nitrophenol (4-NP). Ag-doped-ZnO nanoflowers were synthesized by facile hydrothermal method and examined by several characterization techniques in order to understand the morphology, crystal structure, composition, and surface properties. Morphological results were confirmed by the formation of Ag-doped ZnO nanoflowers decorated with nanosheets. Ag-doped ZnO/glassy carbon electrode (GCE) electrode-material-matrix was used for electrochemical sensing of toxic 4-NP. Under optimized conditions, Ag-doped ZnO/GCE modified electrode exhibits high-sensitivity and selectivity compared to the bare GCE electrode. The Ag-doped ZnO/GCE modified electrode exhibits high electrocatalytic oxidation towards 4-NP. Anodic peak current of 4-NP is increased linearly by increasing the concentration of nitrophenol. Additionally, Ag-doped ZnO/GCE shows a wide range of sensitivity from 10 µM to 500 µM, and a linear calibration plot with a good detection limit of 3 µM (S/N = 3). The proposed Ag-doped ZnO/GCE modified electrode showed high sensing stability. In addition, the oxidation mechanism was studied. The obtained results revealed that the Ag-ZnO/GCE electrode could be the promising sensing electrode for 4-NP sensing.

18.
Phys Chem Chem Phys ; 17(2): 1197-203, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25418832

RESUMO

Using the atomistic pseudopotential method complemented by configuration interaction calculations, we have studied the electronic and optical properties of ZnO nanowires (NWs) in the presence of quantum confinement effects. Our results indicate that the near-band-edge exciton experiences a crossover from an in-plane polarized A-exciton (for D≥ 3 nm) to an out-of-plane polarized C-exciton (for D < 3 nm) due to quantum confinement. This transition leads to a non-monotonic variation of Stokes shift, exhibiting a maximum value around the critical diameter of 3 nm. The observed behavior is analyzed by a stepwise inclusion of correlation effects, leading to a comprehensive description of the excitonic fine structure.

19.
J Chem Phys ; 142(11): 114305, 2015 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-25796247

RESUMO

By means of atomistic empirical pseudopotentials combined with a configuration interaction approach, we have studied the optical properties of wurtzite ZnS quantum dots in the presence of strong quantum confinement effects as a function of pressure. We find the pressure coefficients of quantum dots to be highly size-dependent and reduced by as much as 23% in comparison to the bulk value of 63 meV/GPa obtained from density functional theory calculations. The many-body excitonic effects on the quantum dot pressure coefficients are found to be marginal. The absolute gap deformation potential of quantum dots originates mainly from the energy change of the lowest unoccupied molecular orbital state. Finally, we find that the exciton spin-splitting increases nearly linearly as a function of applied pressure.

20.
Chemosphere ; 362: 142805, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38996979

RESUMO

This study presents the green synthesis and multifunctional properties of Cu/NiO nanocomposites (NCs) fabricated with varying ratios (90:10, 80:20, and 70:30) using Commelina benghalensis leaf extract. X-ray diffraction (XRD) analysis confirmed the polycrystalline nature of the NCs, revealing crystallite sizes of 13.62, 13.22, and 7.14 nm. Scanning electron microscopy (SEM) showed rod-shaped and agglomerated particles with sizes ranging from 17.64 to 22.97 nm. Energy-dispersive X-ray spectroscopy (EDX) verified the elemental composition of copper, nickel, oxygen, and carbon. UV-visible spectroscopy determined the energy band gaps to be in the range of 1.24-1.56 eV. Fourier-transform infrared spectroscopy (FT-IR) indicated the presence of bioactive compounds responsible for the reduction of precursor metal salts. The Cu/NiO NCs exhibited remarkable antimicrobial activity, with the 90:10 ratio showing the highest zones of inhibition at 32.76 ± 0.23 mm, 18.66 ± 0.33 mm, and 14.36 ± 0.32 mm against Bacillus subtilis, Staphylococcus aureus, and Escherichia coli, respectively. Additionally, the 70:30 Cu/NiO NCs demonstrated superior antioxidant activity, with a radical scavenging efficiency of 83.22%, closely approaching that of ascorbic acid (96.98%). Photocatalytic evaluations revealed that the NCs were highly effective in degrading environmental pollutants, achieving 97.69% degradation of malachite green and 96.52% of congo red under UV light irradiation. The novelty of this work lies in the use of Commelina benghalensis leaf extract as a sustainable and eco-friendly reducing and stabilizing agent for synthesizing Cu/NiO NCs, offering a green alternative to conventional methods. The synergistic effects between Cu and NiO in the different compositions (90:10, 80:20, and 70:30) enhanced the overall antimicrobial and photocatalytic activities, highlighting their potential for environmental remediation applications.


Assuntos
Cobre , Química Verde , Nanocompostos , Níquel , Extratos Vegetais , Folhas de Planta , Cobre/química , Nanocompostos/química , Folhas de Planta/química , Extratos Vegetais/química , Níquel/química , Bacillus subtilis/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Staphylococcus aureus/efeitos dos fármacos , Antioxidantes/química , Antioxidantes/farmacologia , Difração de Raios X , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA