Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioconjug Chem ; 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39360947

RESUMO

The ability of Bacillus subtilis transglutaminase (bTG) to functionalize BSA has been investigated using peptide mapping experiments. Interestingly, the conjugation was not detected on a glutamine but on an asparagine residue. A sequence determination study was further performed, and a sequence of 10 amino acids for site-specific conjugation was identified. A monobody showing no native reactivity with the bTG enzyme was produced with the identified peptide sequences and successfully conjugated to various types of substrates in very high yields (>90%) with a 1/1/1.5 ratio of protein/amine/enzyme. Direct conjugation to the amino linker of a small interfering RNA (siRNA) was achieved in good yield, and no impact on the siRNA activity was observed following the conjugation. The identified sequences were further engineered in VHH and IgG scaffolds, and successful conjugation could also be observed with both small molecules and siRNA, confirming the potential of bTG for site-specific enzymatic bioconjugation.

2.
Cell Stem Cell ; 29(1): 160-175.e7, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34847364

RESUMO

Human organoids allow the study of proliferation, lineage specification, and 3D tissue development. Here we present a genome-wide CRISPR screen in induced pluripotent stem cell (iPSC)-derived kidney organoids. The combination of inducible genome editing, longitudinal sampling, and endpoint sorting of tubular and stromal cells generated a complex, high-quality dataset uncovering a broad spectrum of insightful biology from early development to "adult" epithelial morphogenesis. Our functional dataset allows improving mesoderm induction by ROCK inhibition, contains monogenetic and complex trait kidney disease genes, confirms two additional congenital anomalies of the kidney and urinary tract (CAKUT) genes (CCDC170 and MYH7B), and provides a large candidate list of ciliopathy-related genes. Finally, identification of a cis-inhibitory effect of Jagged1 controlling epithelial proliferation shows how mosaic knockouts in pooled CRISPR screening can reveal ways of communication between heterogeneous cell populations in complex tissues. These data serve as a rich resource for the kidney research community and as a benchmark for future iPSC-derived organoid CRISPR screens.


Assuntos
Células-Tronco Pluripotentes Induzidas , Organoides , Edição de Genes , Humanos , Rim , Organogênese
3.
Adv Healthc Mater ; 7(9): e1701393, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29441702

RESUMO

Hydrogels are under active development for controlled drug delivery, but their clinical translation is limited by low drug loading capacity, deficiencies in mechanical toughness and storage stability, and poor control over the drug release that often results in burst release and short release duration. This work reports a design of composite clay hydrogels, which simultaneously achieve a spectrum of mechanical, storage, and drug loading/releasing properties to address the critical needs from translational perspectives. The clay nanoparticles provide large surface areas to adsorb biological drugs, and assemble into microparticles that are physically trapped within and toughen hydrogel networks. The composite hydrogels demonstrate feasibility of storage, and extended release of large quantities of an insulin-like growth factor-1 mimetic protein (8 mg mL-1 ) over four weeks. The release rate is primarily governed by ionic exchange and can be upregulated by low pH, which is typical for injured tissues. A rodent model of Achilles tendon injury is used to demonstrate that the composite hydrogels allow for highly extended and localized release of biological drugs in vivo, while demonstrating biodegradation and biocompatibility. These attributes make the composite hydrogel a promising system for drug delivery and regenerative medicine.


Assuntos
Tendão do Calcâneo , Materiais Biomiméticos , Portadores de Fármacos , Hidrogéis , Fator de Crescimento Insulin-Like I , Peptídeos , Traumatismos dos Tendões , Tendão do Calcâneo/metabolismo , Tendão do Calcâneo/patologia , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacocinética , Materiais Biomiméticos/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Feminino , Humanos , Hidrogéis/química , Hidrogéis/farmacocinética , Hidrogéis/farmacologia , Camundongos , Células NIH 3T3 , Peptídeos/química , Peptídeos/farmacocinética , Peptídeos/farmacologia , Ratos , Ratos Sprague-Dawley , Traumatismos dos Tendões/tratamento farmacológico , Traumatismos dos Tendões/metabolismo , Traumatismos dos Tendões/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA