Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Mol Psychiatry ; 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36997609

RESUMO

Mutations in PCDH19 gene, which encodes protocadherin-19 (PCDH19), cause Developmental and Epileptic Encephalopathy 9 (DEE9). Heterogeneous loss of PCDH19 expression in neurons is considered a key determinant of the disorder; however, how PCDH19 mosaic expression affects neuronal network activity and circuits is largely unclear. Here, we show that the hippocampus of Pcdh19 mosaic mice is characterized by structural and functional synaptic defects and by the presence of PCDH19-negative hyperexcitable neurons. Furthermore, global reduction of network firing rate and increased neuronal synchronization have been observed in different limbic system areas. Finally, network activity analysis in freely behaving mice revealed a decrease in excitatory/inhibitory ratio and functional hyperconnectivity within the limbic system of Pcdh19 mosaic mice. Altogether, these results indicate that altered PCDH19 expression profoundly affects circuit wiring and functioning, and provide new key to interpret DEE9 pathogenesis.

2.
Neurobiol Dis ; 148: 105189, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33227491

RESUMO

Mutations in the TM4SF2 gene, which encodes TSPAN7, cause a severe form of intellectual disability (ID) often comorbid with autism spectrum disorder (ASD). Recently, we found that TM4SF2 loss in mice affects cognition. Here, we report that Tm4sf2-/y mice, beyond an ID-like phenotype, display altered sociability, increased repetitive behaviors, anhedonic- and depressive-like states. Cognition relies on the integration of information from several brain areas. In this context, the lateral habenula (LHb) is strategically positioned to coordinate the brain regions involved in higher cognitive functions. Furthermore, in Tm4sf2-/y mice we found that LHb neurons present hypoexcitability, aberrant neuronal firing pattern and altered sodium and potassium voltage-gated ion channels function. Interestingly, we also found a reduced expression of voltage-gated sodium channel and a hyperactivity of the PKC-ERK pathway, a well-known modulator of ion channels activity, which might explain the functional phenotype showed by Tm4sf2-/y mice LHb neurons. These findings support Tm4sf2-/y mice as useful in modeling some ASD-like symptoms. Additionally, we can speculate that LHb functional alteration in Tm4sf2-/y mice might play a role in the disease pathophysiology.


Assuntos
Habenula/metabolismo , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/genética , Neurônios/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo , Anedonia , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/fisiopatologia , Depressão , Modelos Animais de Doenças , Habenula/fisiopatologia , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Deficiência Intelectual/fisiopatologia , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Knockout , Transtornos do Neurodesenvolvimento/metabolismo , Transtornos do Neurodesenvolvimento/fisiopatologia , Proteína Quinase C/metabolismo , Comportamento Social , Comportamento Estereotipado
3.
Hum Mol Genet ; 27(6): 1027-1038, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29360992

RESUMO

The PCDH19 gene (Xp22.1) encodes the cell-adhesion protein protocadherin-19 (PCDH19) and is responsible for a neurodevelopmental pathology characterized by female-limited epilepsy, cognitive impairment and autistic features, the pathogenic mechanisms of which remain to be elucidated. Here, we identified a new interaction between PCDH19 and GABAA receptor (GABAAR) alpha subunits in the rat brain. PCDH19 shRNA-mediated downregulation reduces GABAAR surface expression and affects the frequency and kinetics of miniature inhibitory postsynaptic currents (mIPSCs) in cultured hippocampal neurons. In vivo, PCDH19 downregulation impairs migration, orientation and dendritic arborization of CA1 hippocampal neurons and increases rat seizure susceptibility. In sum, these data indicate a role for PCDH19 in GABAergic transmission as well as migration and morphological maturation of neurons.


Assuntos
Caderinas/metabolismo , Moduladores GABAérgicos/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Receptores de GABA-A/metabolismo , Animais , Células COS , Chlorocebus aethiops , Epilepsia/genética , Feminino , Células HEK293 , Hipocampo/citologia , Humanos , Potenciais Pós-Sinápticos Inibidores , Plasticidade Neuronal , Protocaderinas , Ratos , Ratos Sprague-Dawley , Convulsões/metabolismo
4.
Proc Natl Acad Sci U S A ; 113(13): 3651-6, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26976584

RESUMO

Behavioral changes in response to stressful stimuli can be controlled via adaptive epigenetic changes in neuronal gene expression. Here we indicate a role for the transcriptional corepressor Lysine-Specific Demethylase 1 (LSD1) and its dominant-negative splicing isoform neuroLSD1, in the modulation of emotional behavior. In mouse hippocampus, we show that LSD1 and neuroLSD1 can interact with transcription factor serum response factor (SRF) and set the chromatin state of SRF-targeted genes early growth response 1 (egr1) and c-fos Deletion or reduction of neuro LSD1 in mutant mice translates into decreased levels of activating histone marks at egr1 and c-fos promoters, dampening their psychosocial stress-induced transcription and resulting in low anxiety-like behavior. Administration of suberoylanilide hydroxamine to neuroLSD1(KO)mice reactivates egr1 and c-fos transcription and restores the behavioral phenotype. These findings indicate that LSD1 is a molecular transducer of stressful stimuli as well as a stress-response modifier. Indeed, LSD1 expression itself is increased acutely at both the transcriptional and splicing levels by psychosocial stress, suggesting that LSD1 is involved in the adaptive response to stress.


Assuntos
Emoções/fisiologia , Genes Precoces , Histona Desmetilases/fisiologia , Processamento Alternativo , Animais , Proteína 1 de Resposta de Crescimento Precoce/genética , Epigênese Genética , Genes fos , Histona Desmetilases/deficiência , Histona Desmetilases/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Plasticidade Neuronal , Fenótipo , Fator de Resposta Sérica/fisiologia , Estresse Psicológico , Transcrição Gênica
5.
Cereb Cortex ; 27(11): 5369-5384, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28968657

RESUMO

Intellectual disability affects 2-3% of the world's population and typically begins during childhood, causing impairments in social skills and cognitive abilities. Mutations in the TM4SF2 gene, which encodes the TSPAN7 protein, cause a severe form of intellectual disability, and currently, no therapy is able to ameliorate this cognitive impairment. We previously reported that, in cultured neurons, shRNA-mediated down-regulation of TSPAN7 affects AMPAR trafficking by enhancing PICK1-GluA2 interaction, thereby increasing the intracellular retention of AMPAR. Here, we found that loss of TSPAN7 function in mice causes alterations in hippocampal excitatory synapse structure and functionality as well as cognitive impairment. These changes occurred along with alterations in AMPAR expression levels. We also found that interfering with PICK1-GluA2 binding restored synaptic function in Tm4sf2-/y mice. Moreover, potentiation of AMPAR activity via the administration of the ampakine CX516 reverted the neurological phenotype observed in Tm4sf2-/y mice, suggesting that pharmacological modulation of AMPAR may represent a new approach for treating patients affected by TM4SF2 mutations and intellectual disability.


Assuntos
Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Deficiência Intelectual/tratamento farmacológico , Deficiência Intelectual/metabolismo , Proteínas de Membrana/deficiência , Proteínas do Tecido Nervoso/deficiência , Psicotrópicos/farmacologia , Receptores de AMPA/metabolismo , Regulação Alostérica , Animais , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Modelos Animais de Doenças , Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/ultraestrutura , Deficiência Intelectual/patologia , Masculino , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/metabolismo , Ligação Proteica/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/ultraestrutura , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Técnicas de Cultura de Tecidos
6.
J Neurosci ; 34(27): 9088-95, 2014 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-24990929

RESUMO

Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is an RNA-binding protein implicated in RNA metabolism. Here, we investigated the role of hnRNP K in synapse function. We demonstrated that hnRNP K regulates dendritic spine density and long-term potentiation (LTP) in cultured hippocampal neurons from embryonic rats. LTP requires the extracellular signal-regulated kinase (ERK)1/2-mediated phosphorylation and cytoplasmic accumulation of hnRNP K. Moreover, hnRNP K knockdown prevents ERK cascade activation and GluA1-S845 phosphorylation and surface delivery, which are essential steps for LTP. These findings establish hnRNP K as a new critical regulator of synaptic transmission and plasticity in hippocampal neurons.


Assuntos
Potenciação de Longa Duração/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Ribonucleoproteínas/fisiologia , Transmissão Sináptica/fisiologia , Animais , Sinalização do Cálcio , Células Cultivadas , Dendritos/ultraestrutura , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Hipocampo/citologia , Sistema de Sinalização das MAP Quinases , Masculino , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Neurônios/fisiologia , Neurônios/ultraestrutura , Fosforilação , Processamento de Proteína Pós-Traducional , Transporte Proteico , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Ratos , Receptores de AMPA/metabolismo , Ribonucleoproteínas/antagonistas & inibidores , Ribonucleoproteínas/genética , Transfecção
7.
Proc Natl Acad Sci U S A ; 109(4): 1323-8, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22232691

RESUMO

The integrins are transmembrane receptors for ECM proteins, and they regulate various cellular functions in the central nervous system. In hippocampal neurons, the ß3 integrin subtype is required for homeostatic synaptic scaling of AMPA receptors (AMPARs) induced by chronic activity deprivation. The surface level of ß3 integrin in postsynaptic neurons directly correlates with synaptic strength and the abundance of synaptic GluA2 AMPAR subunit. Although these observations suggest a functional link between ß3 integrin and AMPAR, little is known about the mechanistic basis for the connection. Here we investigate the nature of ß3 integrin and AMPAR interaction underlying the ß3 integrin-dependent control of synaptic AMPAR expression and thus synaptic strength. We show that ß3 integrin and GluA2 subunit form a complex in mouse brain that involves the direct binding between their cytoplasmic domains. In contrast, ß3 integrin associates with GluA1 AMPAR subunit only weakly, and, in a heterologous expression system, the interaction requires the coexpression of GluA2. Surprisingly, in hippocampal pyramidal neurons, expressing ß3 integrin mutants with either increased or decreased affinity for extracellular ligands has no differential effects in elevating excitatory synaptic currents and surface GluA2 levels compared with WT ß3 integrin. Our findings identify an integrin family member, ß3, as a direct interactor of an AMPAR subunit and provide molecular insights into how this cell-adhesion protein regulates the composition of cell-surface AMPARs.


Assuntos
Regulação da Expressão Gênica/fisiologia , Hipocampo/citologia , Integrina beta3/metabolismo , Complexos Multiproteicos/metabolismo , Neurônios/metabolismo , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Análise de Variância , Animais , Western Blotting , Eletroforese em Gel de Poliacrilamida , Eletrofisiologia , Imunofluorescência , Proteínas de Fluorescência Verde , Células HEK293 , Humanos , Imunoprecipitação , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp
8.
Cell Mol Life Sci ; 70(23): 4411-30, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23475111

RESUMO

Glutamate ionotropic alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (AMPARs) mediate most fast excitatory synaptic transmission in the central nervous system. The content and composition of AMPARs in postsynaptic membranes (which determine synaptic strength) are dependent on the regulated trafficking of AMPAR subunits in and out of the membranes. AMPAR trafficking is a key mechanism that drives nascent synapse development, and is the main determinant of both Hebbian and homeostatic plasticity in mature synapses. Hebbian plasticity seems to be the biological substrate of at least some forms of learning and memory; while homeostatic plasticity (also known as synaptic scaling) keeps neuronal circuits stable by maintaining changes within a physiological range. In this review, we examine recent findings that provide further understanding of the role of AMPAR trafficking in synapse maturation, Hebbian plasticity, and homeostatic plasticity.


Assuntos
Plasticidade Neuronal/fisiologia , Receptores de AMPA/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Animais , Homeostase/fisiologia , Humanos , Modelos Neurológicos , Transporte Proteico/fisiologia , Receptores de AMPA/metabolismo , Sinapses/metabolismo
9.
Nat Neurosci ; 11(4): 457-66, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18311135

RESUMO

The regulated trafficking of neurotransmitter receptors at synapses is critical for synaptic function and plasticity. However, the molecular machinery that controls active transport of receptors into synapses is largely unknown. We found that, in rat hippocampus, the insertion of AMPA receptors (AMPARs) into spines during synaptic plasticity requires a specific motor protein, which we identified as myosin Va. We found that myosin Va associates with AMPARs through its cargo binding domain. This interaction was enhanced by active, GTP-bound Rab11, which is also transported by the motor protein. Myosin Va mediated the CaMKII-triggered translocation of GluR1 receptors from the dendritic shaft into spines, but it was not required for constitutive GluR2 trafficking. Accordingly, myosin Va was specifically required for long-term potentiation, but not for basal synaptic transmission. In summary, we identified the specific motor protein and organelle acceptor that catalyze the directional transport of AMPARs into spines during activity-dependent synaptic plasticity.


Assuntos
Espinhas Dendríticas/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Potenciação de Longa Duração/fisiologia , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Animais , Células Cultivadas , Fatores de Ligação ao Core/metabolismo , Endossomos/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Camundongos , Proteínas Motores Moleculares/metabolismo , Transporte Proteico/fisiologia , Ratos , Transdução de Sinais/fisiologia
10.
Brain Commun ; 4(3): fcac091, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35528232

RESUMO

Protocadherin 19 gene-related epilepsy or protocadherin 19 clustering epilepsy is an infantile-onset epilepsy syndrome characterized by psychiatric (including autism-related), sensory, and cognitive impairment of varying degrees. Protocadherin 19 clustering epilepsy is caused by X-linked protocadherin 19 protein loss of function. Due to random X-chromosome inactivation, protocadherin 19 clustering epilepsy-affected females present a mosaic population of healthy and protocadherin 19-mutant cells. Unfortunately, to date, no current mouse model can fully recapitulate both the brain histological and behavioural deficits present in people with protocadherin 19 clustering epilepsy. Thus, the search for a proper understanding of the disease and possible future treatment is hampered. By inducing a focal mosaicism of protocadherin 19 expression using in utero electroporation in rats, we found here that protocadherin 19 signalling in specific brain areas is implicated in neuronal migration, heat-induced epileptic seizures, core/comorbid behaviours related to autism and cognitive function.

11.
Cell Rep ; 39(8): 110857, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35613587

RESUMO

Protocadherin-19 (PCDH19) is a synaptic cell-adhesion molecule encoded by X-linked PCDH19, a gene linked with epilepsy. Here, we report a synapse-to-nucleus signaling pathway through which PCDH19 bridges neuronal activity with gene expression. In particular, we describe the NMDA receptor (NMDAR)-dependent proteolytic cleavage of PCDH19, which leads to the generation of a PCDH19 C-terminal fragment (CTF) able to enter the nucleus. We demonstrate that PCDH19 CTF associates with chromatin and with the chromatin remodeler lysine-specific demethylase 1 (LSD1) and regulates expression of immediate-early genes (IEGs). Our results are consistent with a model whereby PCDH19 favors maintenance of neuronal homeostasis via negative feedback regulation of IEG expression and provide a key to interpreting PCDH19-related hyperexcitability.


Assuntos
Caderinas , Epilepsia , Genes Precoces , Protocaderinas , Caderinas/genética , Caderinas/metabolismo , Cromatina/genética , Cromatina/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Regulação da Expressão Gênica , Humanos , Protocaderinas/genética , Protocaderinas/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais
12.
Cells ; 11(12)2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35741068

RESUMO

PCDH19 epilepsy (DEE9) is an X-linked syndrome associated with cognitive and behavioral disturbances. Since heterozygous females are affected, while mutant males are spared, it is likely that DEE9 pathogenesis is related to disturbed cell-to-cell communication associated with mosaicism. However, the effects of mosaic PCDH19 expression on cortical networks are unknown. We mimicked the pathology of DEE9 by introducing a patch of mosaic protein expression in one hemisphere of the cortex of conditional PCDH19 knockout mice one day after birth. In the contralateral area, PCDH19 expression was unaffected, thus providing an internal control. In this model, we characterized the physiology of the disrupted network using local field recordings and two photon Ca2+ imaging in urethane anesthetized mice. We found transient episodes of hyperexcitability in the form of brief hypersynchronous spikes or bursts of field potential oscillations in the 9-25 Hz range. Furthermore, we observed a strong disruption of slow wave activity, a crucial component of NREM sleep. This phenotype was present also when PCDH19 loss occurred in adult mice, demonstrating that PCDH19 exerts a function on cortical circuitry outside of early development. Our results indicate that a focal mosaic mutation of PCDH19 disrupts cortical networks and broaden our understanding of DEE9.


Assuntos
Excitabilidade Cortical , Epilepsia , Animais , Caderinas/genética , Epilepsia/genética , Feminino , Masculino , Camundongos , Mosaicismo , Protocaderinas
13.
Cells ; 9(12)2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33352832

RESUMO

During brain development, neurons need to form the correct connections with one another in order to give rise to a functional neuronal circuitry. Mistakes during this process, leading to the formation of improper neuronal connectivity, can result in a number of brain abnormalities and impairments collectively referred to as neurodevelopmental disorders. Cell adhesion molecules (CAMs), present on the cell surface, take part in the neurodevelopmental process regulating migration and recognition of specific cells to form functional neuronal assemblies. Among CAMs, the members of the protocadherin (PCDH) group stand out because they are involved in cell adhesion, neurite initiation and outgrowth, axon pathfinding and fasciculation, and synapse formation and stabilization. Given the critical role of these macromolecules in the major neurodevelopmental processes, it is not surprising that clinical and basic research in the past two decades has identified several PCDH genes as responsible for a large fraction of neurodevelopmental disorders. In the present article, we review these findings with a focus on the non-clustered PCDH sub-group, discussing the proteins implicated in the main neurodevelopmental disorders.


Assuntos
Caderinas/metabolismo , Transtornos do Neurodesenvolvimento/metabolismo , Sinapses/metabolismo , Motivos de Aminoácidos , Animais , Axônios/metabolismo , Adesão Celular , Moléculas de Adesão Celular/metabolismo , Movimento Celular , Proliferação de Células , Dendritos/metabolismo , Humanos , Família Multigênica , Mutação , Neuritos/metabolismo , Neurogênese , Neurônios/metabolismo , Isoformas de Proteínas , Protocaderinas , Distribuição Tecidual
14.
Mol Neurobiol ; 57(1): 393-407, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31364026

RESUMO

Ten to 20% of western countries population suffers from major depression disorder (MDD). Stressful life events represent the main environmental risk factor contributing to the onset of MDD and other stress-related neuropsychiatric disorders. In this regard, investigating brain physiology of stress response underlying the remarkable individual variability in terms of behavioral outcome may uncover stress-vulnerability pathways as a source of candidate targets for conceptually new antidepressant treatments. Serum response factor (SRF) has been addressed as a stress transducer via promoting inherent experience-induced Immediate Early Genes (IEGs) expression in neurons. However, in resting conditions, SRF also represents a transcriptional repressor able to assemble the core LSD1/CoREST/HDAC2 corepressor complex, including demethylase and deacetylase activities. We here show that dominant negative SRF splicing isoform lacking most part of the transactivation domain, namely SRFΔ5, owes its transcriptional repressive behavior to the ability of assembling LSD1/CoREST/HDAC2 corepressor complex meanwhile losing its affinity for transcription-permissive cofactor ELK1. SRFΔ5 is highly expressed in the brain and developmentally regulated. In the light of its activity as negative modulator of dendritic spine density, SRFΔ5 increase along with brain maturation suggests a role in synaptic pruning. Upon acute psychosocial stress, SRFΔ5 isoform transiently increases its levels. Remarkably, when stress is chronically repeated, a different picture occurs where SRF protein becomes stably upregulated in vulnerable mice but not in resilient animals. These data suggest a role for SRFΔ5 that is restricted to acute stress response, while positive modulation of SRF during chronic stress matches the criteria for stress-vulnerability hallmark.


Assuntos
Processamento Alternativo/genética , Proteínas Correpressoras/metabolismo , Histona Desmetilases/metabolismo , Plasticidade Neuronal , Fator de Resposta Sérica/genética , Estresse Fisiológico , Animais , Forma Celular , Espinhas Dendríticas/metabolismo , Células HeLa , Hipocampo/metabolismo , Histona Desacetilase 2/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Fator de Resposta Sérica/metabolismo , Estresse Psicológico/patologia
15.
Mol Neurobiol ; 57(12): 5336-5351, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32880860

RESUMO

PCDH19 encodes for protocadherin-19 (PCDH19), a cell-adhesion molecule of the cadherin superfamily preferentially expressed in the brain. PCDH19 mutations cause a neurodevelopmental syndrome named epileptic encephalopathy, early infantile, 9 (EIEE9) characterized by seizures associated with cognitive and behavioral deficits. We recently reported that PCDH19 binds the alpha subunits of GABAA receptors (GABAARs), modulating their surface availability and miniature inhibitory postsynaptic currents (mIPSCs). Here, we investigated whether PCDH19 regulatory function on GABAARs extends to the extrasynaptic receptor pool that mediates tonic current. In fact, the latter shapes neuronal excitability and network properties at the base of information processing. By combining patch-clamp recordings in whole-cell and cell-attached configurations, we provided a functional characterization of primary hippocampal neurons from embryonic rats of either sex expressing a specific PCDH19 short hairpin (sh)RNA. We first demonstrated that PCDH19 downregulation reduces GABAAR-mediated tonic current, evaluated by current shift and baseline noise analysis. Next, by single-channel recordings, we showed that PCDH19 regulates GABAARs kinetics without altering their conductance. In particular, GABAARs of shRNA-expressing neurons preferentially exhibit brief openings at the expense of long ones, thus displaying a flickering behavior. Finally, we showed that PCDH19 downregulation reduces the rheobase and increases the frequency of action potential firing, thus indicating neuronal hyperexcitability. These findings establish PCDH19 as a critical determinant of GABAAR-mediated tonic transmission and GABAARs gating, and provide the first mechanistic insights into PCDH19-related hyperexcitability and comorbidities.


Assuntos
Potenciais de Ação , Caderinas/metabolismo , Epilepsia/metabolismo , Epilepsia/fisiopatologia , Hipocampo/patologia , Inibição Neural/fisiologia , Neurônios/patologia , Receptores de GABA-A/metabolismo , Animais , Regulação para Baixo , Cinética , RNA Interferente Pequeno/metabolismo , Ratos Sprague-Dawley
16.
Eur J Neurosci ; 30(1): 25-34, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19558602

RESUMO

Glioblastoma multiforme (GBM) is the most invasive and undifferentiated type of brain tumour, and so surgical interventions are ineffective. We found that GluR2 is absent in fast-growing GBM-derived tumour stem cells and high-grade glioma specimens, but is expressed in slow-growing stem cells and low-grade glioma specimens. More remarkably, GluR2 overexpression in U-87MG cells inhibits proliferation by inactivating extracellular signal-regulated kinase (ERK)1/2-Src phosphorylation and induces apoptosis. Mechanistically, we observed that the scaffold protein GRIP is essential for the effect of GluR2 on ERK-Src inactivation. These findings indicate that the absence of the GluR2 subunit favours malignancy.


Assuntos
Apoptose/fisiologia , Caspase 3/metabolismo , Caspase 6/metabolismo , Glioma/fisiopatologia , Sistema de Sinalização das MAP Quinases/fisiologia , Receptores de AMPA/metabolismo , Animais , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Ratos , Quinases da Família src/metabolismo
17.
Dev Neurobiol ; 79(1): 75-84, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30431232

RESUMO

PCDH19 is considered one of the most clinically relevant genes in epilepsy, second only to SCN1A. To date about 150 mutations have been identified as causative for PCDH19-female epilepsy (also known as early infantile epileptic encephalopathy-9, EIEE9), which is characterized by early onset epilepsy, intellectual disabilities, and behavioral disturbances. Although little is known about the physiological role of PCDH19 and the pathogenic mechanisms that lead to EIEE9, in this review, we will present latest researches focused on these aspects, underlining protein expression, its known functions and the mechanisms by which the protein acts, with particular interest in PCDH19 extracellular and intracellular roles in neurons.


Assuntos
Caderinas/genética , Mutação/genética , Transtornos do Neurodesenvolvimento/genética , Espasmos Infantis/genética , Animais , Humanos , Deficiência Intelectual/etiologia , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/complicações , Protocaderinas , Espasmos Infantis/complicações
19.
Nat Commun ; 8: 14536, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28262662

RESUMO

Shrm4, a protein expressed only in polarized tissues, is encoded by the KIAA1202 gene, whose mutations have been linked to epilepsy and intellectual disability. However, a physiological role for Shrm4 in the brain is yet to be established. Here, we report that Shrm4 is localized to synapses where it regulates dendritic spine morphology and interacts with the C terminus of GABAB receptors (GABABRs) to control their cell surface expression and intracellular trafficking via a dynein-dependent mechanism. Knockdown of Shrm4 in rat severely impairs GABABR activity causing increased anxiety-like behaviour and susceptibility to seizures. Moreover, Shrm4 influences hippocampal excitability by modulating tonic inhibition in dentate gyrus granule cells, in a process involving crosstalk between GABABRs and extrasynaptic δ-subunit-containing GABAARs. Our data highlights a role for Shrm4 in synaptogenesis and in maintaining GABABR-mediated inhibition, perturbation of which may be responsible for the involvement of Shrm4 in cognitive disorders and epilepsy.


Assuntos
Hipocampo/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-B/genética , Transmissão Sináptica/genética , Animais , Giro Denteado/metabolismo , Giro Denteado/patologia , Giro Denteado/ultraestrutura , Embrião de Mamíferos , Epilepsia/genética , Epilepsia/metabolismo , Epilepsia/patologia , Regulação da Expressão Gênica , Células HEK293 , Hipocampo/patologia , Hipocampo/ultraestrutura , Humanos , Injeções Intraventriculares , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Inibição Neural , Neurogênese/genética , Neurônios/patologia , Neurônios/ultraestrutura , Cultura Primária de Células , Ratos , Ratos Wistar , Receptor Cross-Talk , Receptores de GABA-A/metabolismo , Receptores de GABA-B/metabolismo , Sinapses/metabolismo , Sinapses/patologia , Sinapses/ultraestrutura
20.
Front Mol Neurosci ; 9: 1, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26834556

RESUMO

Myosin IXa (Myo9a) is a motor protein that is highly expressed in the brain. However, the role of Myo9a in neurons remains unknown. Here, we investigated Myo9a function in hippocampal synapses. In rat hippocampal neurons, Myo9a localizes to the postsynaptic density (PSD) and binds the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) GluA2 subunit. Myo9a(+/-) mice displayed a thicker PSD and increased levels of PSD95 and surface AMPAR expression. Furthermore, synaptic transmission, long-term potentiation (LTP) and cognitive functions were impaired in Myo9a(+/-) mice. Together, these results support a key role for Myo9a in controlling the molecular structure and function of hippocampal synapses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA