RESUMO
Ebola virus (EBOV) disease is characterized by lymphopenia, breach in vascular integrity, cytokine storm, and multiorgan failure. The pathophysiology of organ involvement, however, is incompletely understood. Using [18F]-DPA-714 positron emission tomography (PET) imaging targeting the translocator protein (TSPO), an immune cell marker, we sought to characterize the progression of EBOV-associated organ-level pathophysiology in the EBOV Rhesus macaque model. Dynamic [18F]-DPA-714 PET/computed tomography imaging was performed longitudinally at baseline and at multiple time points after EBOV inoculation, and distribution volumes (Vt) were calculated as a measure of peripheral TSPO binding. Using a mixed-effect linear regression model, spleen and lung Vt decreased, while the bone marrow Vt increased over time after infection. No clear trend was found for liver Vt. Multiple plasma cytokines correlated negatively with lung/spleen Vt and positively with bone marrow Vt. Multiplex immunofluorescence staining in spleen and lung sections confirmed organ-level lymphoid and monocytic loss/apoptosis, thus validating the imaging results. Our findings are consistent with EBOV-induced progressive monocytic and lymphocytic depletion in the spleen, rather than immune activation, as well as depletion of alveolar macrophages in the lungs, with inefficient reactive neutrophilic activation. Increased bone marrow Vt, on the other hand, suggests hematopoietic activation in response to systemic immune cell depletion and leukocytosis and could have prognostic relevance. In vivo PET imaging provided better understanding of organ-level pathophysiology during EBOV infection. A similar approach can be used to delineate the pathophysiology of other systemic infections and to evaluate the effectiveness of newly developed treatment and vaccine strategies.
Assuntos
Doença pelo Vírus Ebola , Tomografia por Emissão de Pósitrons , Receptores de GABA , Animais , Biomarcadores/metabolismo , Modelos Animais de Doenças , Doença pelo Vírus Ebola/diagnóstico por imagem , Doença pelo Vírus Ebola/patologia , Pulmão/patologia , Macaca mulatta , Tomografia por Emissão de Pósitrons/métodos , Pirazóis/metabolismo , Pirimidinas/metabolismo , Receptores de GABA/metabolismo , Baço/patologiaRESUMO
Single-domain antibodies, or nanobodies (Nbs), are promising biomolecules for use in molecular imaging due to their excellent affinity, specificity, and fast clearance from the blood. Given their short blood half-life, pairing Nbs with short-lived imaging radioisotopes is desirable. Because fluorine-18 (18F) is routinely used for clinical imaging, it is an attractive radioisotope for Nbs. We report a novel sortase-based, site-specific 18F-labeling method applied to three nanobodies. Labeled nanobodies were synthesized either by a two-step indirect radiolabeling method in one pot or by a one-step direct labeling method using a sortase-mediated conjugation of either the radiolabeled chelator (H-GGGK((±)-Al[18F]FH3RESCA)-NH2) or the unlabeled chelator (H-GGGK((±)-H3RESCA)-NH2) followed by labeling with Al[18F]F, respectively. The overall radiochemical yields were 15-43% (n = 22, decay-corrected) in 70 min (indirect labeling) and 23-58% (n = 12, decay-corrected) in 50 min (direct labeling). The radiochemical purities of the labeled nanobodies prepared by both methods were >98% with a specific activity of 400-600 Ci/mmol (n = 22) for each of the three Nbs tested and exhibited excellent stability profiles under physiological conditions. This simple, site-specific, reproducible, and generalizable 18F-labeling method to prepare nanobodies (Nb-Al[18F]F-RESCA) or other low molecular weight biomolecules can easily be adopted in various settings for preclinical and clinical studies.
Assuntos
Aminoaciltransferases , Radioisótopos de Flúor , Anticorpos de Domínio Único , Radioisótopos de Flúor/química , Anticorpos de Domínio Único/química , Aminoaciltransferases/metabolismo , Cisteína Endopeptidases/metabolismo , Proteínas de Bactérias/química , Marcação por Isótopo/métodos , Quelantes/química , Humanos , Compostos Radiofarmacêuticos/químicaRESUMO
PURPOSE: Invasive fungal diseases, such as pulmonary aspergillosis, are common life-threatening infections in immunocompromised patients and effective treatment is often hampered by delays in timely and specific diagnosis. Fungal-specific molecular imaging ligands can provide non-invasive readouts of deep-seated fungal pathologies. In this study, the utility of antibodies and antibody fragments (Fab) targeting ß-glucans in the fungal cell wall to detect Aspergillus infections was evaluated both in vitro and in preclinical mouse models. METHODS: The binding characteristics of two commercially available ß-glucan antibody clones and their respective antigen-binding Fabs were tested using biolayer interferometry (BLI) assays and immunofluorescence staining. In vivo binding of the Zirconium-89 labeled antibodies/Fabs to fungal pathogens was then evaluated using PET/CT imaging in mouse models of fungal infection, bacterial infection and sterile inflammation. RESULTS: One of the evaluated antibodies (HA-ßG-Ab) and its Fab (HA-ßG-Fab) bound to ß-glucans with high affinity (KD = 0.056 & 21.5 nM respectively). Binding to the fungal cell wall was validated by immunofluorescence staining and in vitro binding assays. ImmunoPET imaging with intact antibodies however showed slow clearance and high background signal as well as nonspecific accumulation in sites of infection/inflammation. Conversely, specific binding of [89Zr]Zr-DFO-HA-ßG-Fab to sites of fungal infection was observed when compared to the isotype control Fab and was significantly higher in fungal infection than in bacterial infection or sterile inflammation. CONCLUSIONS: [89Zr]Zr-DFO-HA-ßG-Fab can be used to detect fungal infections in vivo. Targeting distinct components of the fungal cell wall is a viable approach to developing fungal-specific PET tracers.
Assuntos
Aspergilose , Radioisótopos , Zircônio , beta-Glucanas , Zircônio/química , Animais , Camundongos , Aspergilose/diagnóstico por imagem , Aspergilose/imunologia , beta-Glucanas/química , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Aspergillus , Fragmentos de Imunoglobulinas/química , Fragmentos de Imunoglobulinas/imunologiaRESUMO
Due to the continuous rise in global incidence and severity of invasive fungal infections (IFIs), particularly among immunocompromised and immunodeficient patients, there is an urgent demand for swift and accurate fungal pathogen diagnosis. Therefore, the need for fungal-specific positron emission tomography (PET) imaging agents that can detect the infection in the early stages is increasing. Cellobiose, a disaccharide, is readily metabolized by fungal pathogens such as Aspergillus species. Recently, our group reported fluorine-18 labeled cellobiose, 2-deoxy-2-[18F]fluorocellobiose ([18F]FCB), for specific imaging of Aspergillus infection. The positive imaging findings with very low background signal on delayed imaging make this ligand a promising fungal-specific imaging ligand. Inspired by this result, the decision was made to automate the radiolabeling procedure for better reproducibility and to facilitate clinical translation. A Trasis AllInOne (Trasis AIO) automated module was used for this purpose. The reagent vials contain commercially available 2-deoxy-2-[18F]fluoroglucose ([18F]FDG), glucose-1-phosphate, and enzyme (cellobiose phosphorylase). A Sep-Pak cartridge was used to purify the tracer. The overall radiochemical yield was 50%-70% (n = 6, decay corrected) in 75-min synthesis time with a radiochemical purity of > 98%. This is a highly reliable protocol to produce current good manufacturing practice (cGMP)-compliant [18F]FCB for clinical PET imaging.
Assuntos
Celobiose , Celobiose/síntese química , Celobiose/química , Celobiose/análogos & derivados , Técnicas de Química Sintética , Automação , RadioquímicaRESUMO
The use of radiolabeled glucose for PET imaging resulted in the most commonly used tracer in the clinic, 2-deoxy-2-[18F]fluoroglucose (FDG). More recently, other radiolabeled sugars have been reported for various applications, including imaging tumors and infections. Therefore, in this study, we developed a series of fluorine-18-labeled L-rhamnose derivatives as potential PET tracers of various fungal and bacterial strains. Acetyl-protected triflate precursors of rhamnose were prepared and radiolabeled with fluorine-18 followed by hydrolysis to produce L-deoxy [18F]fluororhamnose. The overall radiochemical yield was 7-27% in a 90 min synthesis time with a radiochemical purity of 95%. In vivo biodistribution of the ligands using PET imaging showed that 2-deoxy-2-[18F]fluoro-L-rhamnose is stable for at least up to 60 min in mice and eliminated via renal clearance. The tracer also exhibited minimal tissue or skeletal uptake in healthy mice resulting in a low background signal.
Assuntos
Radioisótopos de Flúor , Ramnose , Camundongos , Animais , Distribuição Tecidual , Linhagem Celular Tumoral , Tomografia por Emissão de Pósitrons/métodos , Compostos RadiofarmacêuticosRESUMO
BACKGROUND: Several new generation CDK4/6 inhibitors have been developed and approved for breast cancer therapy in combination with endocrine therapeutics. Application of these inhibitors either alone or in combination in other solid tumors has been proposed, but no imaging biomarkers of response have been reported in non-breast cancer animal models. The purpose of this study was to evaluate 3'-[18F]fluoro-3'-deoxythymidine ([18F]FLT) Positron Emission Tomography (PET) as in vivo biomarker of response to palbociclib in a non-breast cancer model. METHODS: Twenty-four NSG mice bearing patient derived xenografts (PDX) of a well-characterized bladder tumor were randomized into 4 treatment groups: vehicle (n = 6); palbociclib (n = 6); temozolomide (n = 6); and palbociclib plus temozolomide (n = 6) and treated with two cycles of therapy or vehicle. Tumor uptake of [18F]FLT was determined by micro-PET/CT at baseline, 3 days, and 9 days post initiation of therapy. Following the second cycle of therapy, the mice were maintained until their tumors reached a size requiring humane termination. RESULTS: [18F]FLT uptake decreased significantly in the palbociclib and combination arms (p = 0.0423 and 0.0106 respectively at day 3 and 0.0012 and 0.0031 at day 9) with stable tumor volume. In the temozolomide arm [18F]FLT uptake increased with day 9 uptake significantly different than baseline (p = 0.0418) and progressive tumor growth was observed during the treatment phase. All groups exhibited progressive disease after day 22, 10 days following cessation of therapy. CONCLUSION: Significant decreases in [18F]FLT uptake as early as three days post initiation of therapy with palbociclib, alone or in combination with temozolomide, in this bladder cancer model correlates with an absence of tumor growth during therapy that persists until day 18 for the palbociclib group and day 22 for the combination group (6 days and 10 days) following cessation of therapy. These results support early modulation of [18F]FLT as an in vivo biomarker predictive of palbociclib therapy response in a non-breast cancer model.
Assuntos
Didesoxinucleosídeos , Neoplasias da Bexiga Urinária , Animais , Biomarcadores , Linhagem Celular Tumoral , Didesoxinucleosídeos/metabolismo , Humanos , Camundongos , Piperazinas , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons/métodos , Piridinas , Temozolomida/uso terapêutico , Timidina , Neoplasias da Bexiga Urinária/diagnóstico por imagem , Neoplasias da Bexiga Urinária/tratamento farmacológicoRESUMO
In this report, a simple and efficient process to achieve fluorine-18-labeled 1,2,3-triazole is reported. The heteroaromatic radiofluorination was successfully achieved through an iodine-fluorine-18 exchange in an aqueous medium requiring only trace amounts of base and no azeotropic drying of fluorine-18. This methodology was optimized on a model reaction and further validated on multiple 1,2,3-triazole substrates with 18-60% radiochemical conversions. Using this strategy-the radiosynthesis of a triazole-based thiamin analogue-a potential positron emission tomography (PET) probe for imaging thiamin-dependent enzymes was synthesized with 10-16% isolated radiochemical yield (RCY) in 40 min (uncorrected, n > 5).
RESUMO
The C-X-C motif chemokine receptor 4 (CXCR4) is a seven-transmembrane G protein-coupled receptor that is overexpressed in numerous diseases, particularly in various cancers and is a powerful chemokine, attracting cells to the bone marrow niche. Therefore, CXCR4 is an attractive target for imaging and therapeutic purposes. The goal of this study is to develop an efficient, reproducible, and straightforward method to prepare a fluorine-18 labeled CXCR4 ligand. 6-[18F]Fluoronicotinic acid-2,3,5,6-tetrafluorophenyl ester (6-[18F]FPy-TFP) and nicotinic acid N-hydroxysuccinimide ester (6-[18F]SFPy) have been prepared using 'fluorination on the Sep-Pak' method. Conjugation of 6-[18F]SFPy or 6-[18F]FPy-TFP with the alpha-amino group at the N terminus of the protected T140 precursor followed by deprotection, yielded the final product 6-[18F]FPy-T140. The overall radiochemical yields were 6-17% (n = 15, decay-corrected) in a 90-min radiolabeling time with a radiochemical purity >99%. 6-[18F]FPy-T140 exhibited high specific binding and nanomolar affinity for CXCR4 in vitro, indicating that the biological activity of the peptide was preserved. For the first time, [18F]SFPy has been prepared using 'fluorination on the Sep-Pak' method that allows rapid automated synthesis of 6-[18F]FPy-T140. In addition to increased synthetic efficiency, this construct binds with CXCR4 in high affinity and may have potential as an in vivo positron emission tomography (PET) imaging agent. This radiosynthesis method should encourage wider use of this PET agent to quantify CXCR4 in both research and clinical settings.
Assuntos
Compostos Radiofarmacêuticos , Receptores CXCR4 , Ésteres/química , Radioisótopos de Flúor , Células HeLa , Humanos , Ligantes , Neoplasias/diagnóstico , Neoplasias/metabolismo , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química , Receptores CXCR4/análise , Receptores CXCR4/antagonistas & inibidores , Succinimidas/químicaRESUMO
The ability of heart and skeletal muscle (SM) to switch between fat and carbohydrate oxidation is of high interest in the study of metabolic diseases and exercise physiology. Positron emission tomography (PET) imaging with the glucose analog 2-[18F]fluoro-2-deoxy-glucose (18F-FDG) provides a noninvasive means to quantitate glucose metabolic rates. However, evaluation of fatty acid oxidation (FAO) rates by PET has been limited by the lack of a suitable FAO probe. We have developed a metabolically trapped oleate analog, ( Z)-18-[18F]fluoro-4-thia-octadec-9-enoate (18F-FTO), and investigated the feasibility of using 18F-FTO and 18F-FDG to measure FAO and glucose uptake, respectively, in heart and SM of rats in vivo. To enhance the metabolic rates in SM, the vastus lateralis (VL) muscle was electrically stimulated in fasted rats for 30 min before and 30 min following radiotracer injection. The responses of radiotracer uptake patterns to pharmacological inhibition of FAO were assessed by pretreatment of the rats with the carnitine palmitoyl-transferase-1 (CPT-1) inhibitor sodium 2-[5-(4-chlorophenyl)-pentyl]oxirane-2-carboxylate (POCA). Small-animal PET images and biodistribution data with 18F-FTO and 18F-FDG demonstrated profound metabolic switching for energy provision in the myocardium from exogenous fatty acids to glucose in control and CPT-1-inhibited rats, respectively. Uptake of both radiotracers was low in unstimulated SM. In stimulated VL muscle, 18F-FTO and 18F-FDG uptakes were increased 4.4- and 28-fold, respectively, and CPT-1 inhibition only affected 18F-FTO uptake (66% decrease). 18F-FTO is a FAO-dependent PET probe that may allow assessment of energy substrate metabolic switching in conjunction with 18F-FDG and other metabolic probes.
Assuntos
Ácidos Graxos/metabolismo , Glucose/metabolismo , Coração/diagnóstico por imagem , Miocárdio/metabolismo , Músculo Quadríceps/diagnóstico por imagem , Músculo Quadríceps/metabolismo , Animais , Carnitina O-Palmitoiltransferase/antagonistas & inibidores , Compostos de Epóxi/farmacologia , Fluordesoxiglucose F18 , Ácido Láctico/metabolismo , Contração Muscular , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/metabolismo , Ácidos Oleicos , Oxirredução , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Músculo Quadríceps/efeitos dos fármacos , Compostos Radiofarmacêuticos , Ratos , Sulfetos , Distribuição Tecidual , Triglicerídeos/metabolismoRESUMO
OBJECTIVE: The goal is to evaluate avelumab, an anti-PD-L1 monoclonal immunoglobulin G antibody labeled with zirconium-89 in human PD-L1-expressing cancer cells and mouse xenografts for clinical translation. METHODS: [89Zr]Zr-DFO-PD-L1 monoclonal antibody (mAb) was synthesized using avelumab conjugated to desferrioxamine. In vitro binding studies and biodistribution studies were performed with PD-L1+MDA-MB231 cells and MDA-MB231 xenograft mouse models, respectively. Biodistributions were determined at 1, 2, 3, 5, and 7 days post coinjection of [89Zr]Zr-DFO-PD-L1 mAb without or with unlabeled avelumab (10, 20, 40, and 400 µg). RESULTS: [89Zr]Zr-DFO-PD-L1 mAb exhibited high affinity (Kd â¼ 0.3 nM) and detected moderate PD-L1 expression levels in MDA-MB231 cells. The spleen and lymph nodes exhibited the highest [89Zr]Zr-DFO-PD-L1 mAb uptakes in all time points, while MDA-MB231 tumor uptakes were lower but highly retained. In the unlabeled avelumab dose escalation studies, spleen tissue-muscle ratios decreased in a dose-dependent manner indicating specific [89Zr]Zr-DFO-PD-L1 mAb binding to PD-L1. In contrast, lymph node and tumor tissue-muscle ratios increased 4- to 5-fold at 20 and 40 µg avelumab doses. CONCLUSIONS: [89Zr]Zr-DFO-PD-L1 mAb exhibited specific and high affinity for PD-L1 in vitro and had target tissue uptakes correlating with PD-L1 expression levels in vivo. [89Zr]Zr-DFO-PD-L1 mAb uptake in PD-L1+tumors increased with escalating doses of avelumab.
Assuntos
Anticorpos Monoclonais/administração & dosagem , Antígeno B7-H1/metabolismo , Neoplasias da Mama/tratamento farmacológico , Desferroxamina/química , Radioisótopos/química , Zircônio/química , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacocinética , Anticorpos Monoclonais Humanizados , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/metabolismo , Relação Dose-Resposta a Droga , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imunoconjugados , Camundongos , Tomografia por Emissão de Pósitrons , Distribuição Tecidual , Resultado do Tratamento , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Copper-mediated radiofluorination provides a quick and versatile approach for 18 F-labeling of arenes and heteroarenes. However, this method is known to be base sensitive, which has been a barrier for preparative scale radiosynthesis. In this report, we provide an approach for copper-mediated radiofluorination without azeotropic drying or adding a base. [18 F]Fluoride trapped on a PS-HCO3 Sep-Pak was quantitatively eluted with a solution of 4-dimethylaminopyridinium trifluoromethanesulfonate (DMAP·OTf) in anhydrous N,N-dimethylformamide (DMF). The eluted solution was directly used for copper-mediated radiofluorination. Twelve boronic ester substrates were tested, yielding fluorinated products in 27% to 83% radiochemical yield based on HPLC analysis. This approach was successfully applied to the radiosynthesis of [18 F]flumazenil, a well-known positron emission tomography (PET) tracer for imaging central benzodiazepine receptors, with a radiochemical yield of 47%. This highly efficient protocol significantly augments the powerful copper-mediated radiofluorination approach.
Assuntos
Flumazenil/síntese química , Radioisótopos de Flúor/química , Compostos Radiofarmacêuticos/síntese química , Cobre/química , Dimetilformamida/química , Compostos de Piridínio/químicaRESUMO
To further explore the scope of our recently developed "fluorination on Sep-Pak" method, we prepared two well-known positron emission tomography (PET) tracers 21-[18F]fluoro-16α,17α-[(R)-(1'-α-furylmethylidene)dioxy]-19-norpregn-4-ene-3,20-dione furanyl norprogesterone ([18F]FFNP) and 16ß-[18F]fluoro-5α-dihydrotestosterone ([18F]FDHT). Following the "fluorination on Sep-Pak" method, over 70% elution efficiency was observed with 3 mg of triflate precursor of [18F]FFNP. The overall yield of [18F]FFNP was 64-72% (decay corrected) in 40 min synthesis time with a molar activity of 37-81 GBq/µmol (1000-2200 Ci/mmol). Slightly lower elution efficiency (~55%) was observed with the triflate precursor of [18F]FDHT. Fluorine-18 labeling, reduction, and deprotection to prepare [18F]FDHT were performed on Sep-Pak cartridges (PS-HCO3 and Sep-Pak plus C-18). The overall yield of [18F]FDHT was 25-32% (decay corrected) in 70 min. The molar activity determined by using mass spectrometry was 63-148 GBq/µmol (1700-4000 Ci/mmol). Applying this quantitative measure of molar activity to in vitro assays [18F]FDHT exhibited high-affinity binding to androgen receptors (Kd~2.5 nM) providing biological validation of this method.
Assuntos
Di-Hidrotestosterona/química , Radioisótopos de Flúor/química , Norpregnenos/química , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Feminino , Halogenação , Humanos , Masculino , Espectrometria de Massas , Estrutura MolecularRESUMO
Following our recently published fluorine-18 labeling method, "Radio-fluorination on the Sep-Pak", we have successfully synthesized 6-[18 F]fluoronicotinaldehyde by passing a solution (1:4 acetonitrile: t-butanol) of its quaternary ammonium salt precursor, 6-(N,N,N-trimethylamino)nicotinaldehyde trifluoromethanesulfonate (2), through a fluorine-18 containing anion exchange cartridge (PS-HCO3 ). Over 80% radiochemical conversion was observed using 10 mg of precursor within 1 minute. The [18 F]fluoronicotinaldehyde ([18 F]5) was then conjugated with 1-(6-(aminooxy)hexyl)-1H-pyrrole-2,5-dione to prepare the fluorine-18 labeled maleimide functionalized prosthetic group, 6-[18 F]fluoronicotinaldehyde O-(6-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)hexyl) oxime, 6-[18 F]FPyMHO ([18 F]6). The current Sep-Pak method not only improves the overall radiochemical yield (50 ± 9%, decay-corrected, n = 9) but also significantly reduces the synthesis time (from 60-90 minutes to 30 minutes) when compared with literature methods for the synthesis of similar prosthetic groups.
Assuntos
Radioisótopos de Flúor/química , Halogenação , Marcação por Isótopo/métodos , Maleimidas/química , Radioquímica/métodos , Técnicas de Química Sintética , CinéticaRESUMO
4-Aminopyridine is a clinically approved drug to improve motor symptoms in multiple sclerosis. A fluorine-18-labeled derivative of this drug, 3-[18 F]fluoro-4-aminopyridine, is currently under investigation for positron emission tomography (PET) imaging of demyelination. Herein, the Yamada-Curtius reaction has been successfully applied for the preparation of this PET radioligand with a better radiochemical yield and improved specific activity. The overall radiochemical yield was 5 to 15% (n = 12, uncorrected) with a specific activity of 37 to 148 GBq/µmol (end of synthesis) in a 90 minute synthesis time. It is expected that this 1 pot Yamada-Curtius reaction can be used to prepare similar fluorine-18-labeled amino substituted heterocycles.
Assuntos
4-Aminopiridina/química , Radioisótopos de Flúor/química , Compostos Radiofarmacêuticos/síntese química , Automação/instrumentação , Automação/métodos , Técnicas de Química Sintética/instrumentação , Técnicas de Química Sintética/métodos , Tomografia por Emissão de Pósitrons/métodosRESUMO
Fluorine-18 labeling of biomolecules is mostly performed by an indirect labeling method using a prosthetic group. Fluorine-18 labeled 6-fluoronicotinic acid-2,3,5,6-tetrafluorophenyl ester is a useful prosthetic group to radiolabel a protein. Recently, we reported an improved preparation of this prosthetic group. To test the conjugation efficiency of the labeled ester prepared by this method, we have performed conjugation reactions with a peptide, a protein, and a small molecule. Prostate-specific membrane antigen targeting small molecule [18 F]DCFPyL, αvß3 integrin receptors targeting peptide [18 F]c(RGDfK) and [18 F]albumin were prepared in good radiochemical yields. The conjugation reactions were completed at 40°C to 50°C in 10 minutes. The overall radiochemical yield was 25% to 43% in 30 to 45 minutes.
Assuntos
Albuminas/química , Antígenos de Superfície/química , Radioisótopos de Flúor/química , Glutamato Carboxipeptidase II/química , Halogenação , Marcação por Isótopo/métodos , Oligopeptídeos/química , Sequência de Aminoácidos , CinéticaRESUMO
Desferrioxamine B (DFO) is the clinical standard chelator for preparing zirconium-89 labeled antibodies. In the current study, the stabilities of a zirconium-89 labeled panitumumab (PAN; Vectibix®) with three different chelators (DFO, DFO*, and DOTA) were compared. PAN is an anti-HER1/EGFR monoclonal antibody approved by the FDA for the treatment of HER1-expressing colorectal cancers and was used as the model antibody for this study. DFO/DFO* conjugates of PAN were directly radiolabeled with zirconium-89 at room temperature to produce [89Zr]Zr-DFO/DFO*-PAN conjugates following a well-established procedure. A zirconium-89 labeled DOTA-PAN conjugate was prepared by an indirect radiolabeling method. A cyclooctyne-linked DOTA chelator (BCN-DOTA-GA) was first radiolabeled with zirconium-89 at 90 °C under a two-step basic pH adjustment method followed by conjugation with PAN-tetrazene at 37 °C to produce a labeled conjugate, BCN-[89Zr]Zr-DOTA-GA-PAN. High reproducibility of the radiolabeling was observed via this two-step basic pH adjustment. The overall radiochemical yield was 40-50% (n = 12, decay uncorrected) with a radiochemical purity of >95% in 2 h synthesis time. All three conjugates were stable in whole human serum for up to 7 days at 37 °C. The kinetic inertness of the conjugates was assessed against the EDTA challenge. BCN-[89Zr]Zr-DOTA-GA-PAN exhibited excellent inertness followed by [89Zr]Zr-DFO*-PAN. [89Zr]Zr-DFO-PAN displayed the lowest level of inertness.
RESUMO
Introduction: Prostate-specific membrane antigen (PSMA) is present in high amounts in salivary glands, but it is unclear whether labeled binders of PSMA are excreted in the saliva. Methods: Ten patients with prostate cancer underwent whole-body [18F]DCFPyL PET/CT (NCT03181867), and saliva samples were collected between 0-120 minutes post-injection. [18F]DCFPyL salivary excretion was measured over 120 minutes and expressed as %ID/g. Protein-associated binding was estimated by the percentage of [18F]DCFPyL versus parent radiotracer. Results: All PET scans of 10 patients (69 ± 8 years) with histologically confirmed prostate cancer (PSA= 2.4 ± 2.4, and Gleason Grade = 6-9) showed high uptake of [18F]-DCFPyL in salivary glands while 8 patients demonstrated high uptake in the saliva at 45 minutes. The intact [18F]-DCFPyL (98%) was also confirmed in the saliva samples at 120 min with increasing salivary radioactivity between 30-120 min. Conclusion: Systemically injected [18F]DCFPyL shows salivary gland uptake, an increasing amount of which is secreted in saliva over time and is not maximized by 120 minutes post-injection. Although probably insignificant for diagnostic studies, patients undergoing PSMA-targeted therapies should be aware of radioactivity in saliva.
RESUMO
The global incidence of invasive fungal infections (IFIs) has increased over the past few decades, mainly in immunocompromised patients, and is associated with high mortality and morbidity. Aspergillus fumigatus is one of the most common and deadliest IFI pathogens. Major hurdles to treating fungal infections remain the lack of rapid and definitive diagnosis, including the frequent need for invasive procedures to provide microbiological confirmation, and the lack of specificity of structural imaging methods. To develop an Aspergillus-specific positron emission tomography (PET) imaging agent, we focused on fungal-specific sugar metabolism. We radiolabeled cellobiose, a disaccharide known to be metabolized by Aspergillus species, and synthesized 2-deoxy-2-[18F]fluorocellobiose ([18F]FCB) by enzymatic conversion of 2-deoxy-2-[18F]fluoroglucose ([18F]FDG) with a radiochemical yield of 60 to 70%, a radiochemical purity of >98%, and 1.5 hours of synthesis time. Two hours after [18F]FCB injection in A. fumigatus pneumonia as well as A. fumigatus, bacterial, and sterile inflammation myositis mouse models, retained radioactivity was only seen in foci with live A. fumigatus infection. In vitro testing confirmed production of ß-glucosidase enzyme by A. fumigatus and not by bacteria, resulting in hydrolysis of [18F]FCB into glucose and [18F]FDG, the latter being retained by the live fungus. The parent molecule was otherwise promptly excreted through the kidneys, resulting in low background radioactivity and high target-to-nontarget ratios at A. fumigatus infectious sites. We conclude that [18F]FCB is a promising and clinically translatable Aspergillus-specific PET tracer.
Assuntos
Aspergillus fumigatus , Celobiose , Tomografia por Emissão de Pósitrons , Animais , Tomografia por Emissão de Pósitrons/métodos , Celobiose/metabolismo , Aspergillus fumigatus/metabolismo , Camundongos , Aspergilose/diagnóstico por imagem , Fluordesoxiglucose F18/química , Aspergillus/metabolismo , Distribuição Tecidual , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/metabolismoRESUMO
Tuberculosis remains a large global disease burden for which treatment regimens are protracted and monitoring of disease activity difficult. Existing detection methods rely almost exclusively on bacterial culture from sputum which limits sampling to organisms on the pulmonary surface. Advances in monitoring tuberculous lesions have utilized the common glucoside [18F]FDG, yet lack specificity to the causative pathogen Mycobacterium tuberculosis (Mtb) and so do not directly correlate with pathogen viability. Here we show that a close mimic that is also positron-emitting of the non-mammalian Mtb disaccharide trehalose - 2-[18F]fluoro-2-deoxytrehalose ([18F]FDT) - is a mechanism-based reporter of Mycobacteria-selective enzyme activity in vivo. Use of [18F]FDT in the imaging of Mtb in diverse models of disease, including non-human primates, successfully co-opts Mtb-mediated processing of trehalose to allow the specific imaging of TB-associated lesions and to monitor the effects of treatment. A pyrogen-free, direct enzyme-catalyzed process for its radiochemical synthesis allows the ready production of [18F]FDT from the most globally-abundant organic 18F-containing molecule, [18F]FDG. The full, pre-clinical validation of both production method and [18F]FDT now creates a new, bacterium-selective candidate for clinical evaluation. We anticipate that this distributable technology to generate clinical-grade [18F]FDT directly from the widely-available clinical reagent [18F]FDG, without need for either custom-made radioisotope generation or specialist chemical methods and/or facilities, could now usher in global, democratized access to a TB-specific PET tracer.
Assuntos
Mycobacterium tuberculosis , Tomografia por Emissão de Pósitrons , Trealose , Tuberculose , Animais , Mycobacterium tuberculosis/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Trealose/metabolismo , Tuberculose/diagnóstico por imagem , Tuberculose/microbiologia , Tuberculose/metabolismo , Humanos , Camundongos , Radioisótopos de Flúor , Fluordesoxiglucose F18/metabolismo , Fluordesoxiglucose F18/química , Compostos Radiofarmacêuticos/metabolismo , Modelos Animais de Doenças , FemininoRESUMO
Background: Osteosarcoma (OS) is an aggressive pediatric cancer with unmet therapeutic needs. Glutaminase 1 (GLS1) inhibition, alone and in combination with metformin, disrupts the bioenergetic demands of tumor progression and metastasis, showing promise for clinical translation. Materials and Methods: Three positron emission tomography (PET) clinical imaging agents, [18F]fluoro-2-deoxy-2-D-glucose ([18F]FDG), 3'-[18F]fluoro-3'-deoxythymidine ([18F]FLT), and (2S, 4R)-4-[18F]fluoroglutamine ([18F]GLN), were evaluated in the MG63.3 human OS xenograft mouse model, as companion imaging biomarkers after treatment for 7 d with a selective GLS1 inhibitor (CB-839, telaglenastat) and metformin, alone and in combination. Imaging and biodistribution data were collected from tumors and reference tissues before and after treatment. Results: Drug treatment altered tumor uptake of all three PET agents. Relative [18F]FDG uptake decreased significantly after telaglenastat treatment, but not within control and metformin-only groups. [18F]FLT tumor uptake appears to be negatively affected by tumor size. Evidence of a flare effect was seen with [18F]FLT imaging after treatment. Telaglenastat had a broad influence on [18F]GLN uptake in tumor and normal tissues. Conclusions: Image-based tumor volume quantification is recommended for this paratibial tumor model. The performance of [18F]FLT and [18F]GLN was affected by tumor size. [18F]FDG may be useful in detecting telaglenastat's impact on glycolysis. Exploration of kinetic tracer uptake protocols is needed to define clinically relevant patterns of [18F]GLN uptake in patients receiving telaglenastat.