Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(1): 57-61, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38109785

RESUMO

The exploration of fourth-period organoelements, particularly organoseleniums in their highest VI oxidation state, is limited owing to their stability and synthesis. Herein, the isolation of a new class of quinolinyl-embedded, hexavalent selenium(VI) benzoselenonates has been discussed and further evaluated for a metal-free electrocatalytic hydrogen evolution reaction (HER). The Se(VI) benzoselenonates exhibited high Faradaic efficiency (F.E.) of metal-free H2 gas production up to 86% with a very good turnover number (TON) up to 43 and moderate overpotential (η) of 500 mV; in the presence of mild acetic acid source in a less deprotonating DMF solvent. Taken together with various (NMR, UV-vis, and EPR) spectroscopic and DFT computation studies, a plausible HER pathway is proposed, which suggests that the electrochemical reduction of quinolinyl ring is the initiation step and Se(VI) acts as the reaction site by involving a hydridic type of intermediate for the electrochemical H2 gas generation.

2.
Chemistry ; 29(49): e202301502, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37338224

RESUMO

Benzamide-derived organochalcogens (chalcogen=S, Se, and Te) have shown promising interest in biological and synthetic chemistry. Ebselen molecule derived from benzamide moiety is the most studied organoselenium. However, its heavier congener organotellurium is under-explored. Here, an efficient copper-catalyzed atom economical synthetic method has been developed to synthesize 2-phenyl-benzamide tellurenyl iodides by inserting a tellurium atom into carbon-iodine bond of 2-iodobenzamides in one pot with 78-95 % yields. Further, the Lewis acidic nature of Te center and Lewis basic nature of nitrogen of the synthesized 2-Iodo-N-(quinolin-8-yl)benzamide tellurenyl iodides enabled them as pre-catalyst for the activation of epoxide with CO2 at 1 atm for the preparation of cyclic carbonates with TOF and TON values of 1447 h-1 and 4343, respectively, under solvent-free conditions. In addition, 2-iodo-N-(quinolin-8-yl)benzamide tellurenyl iodides have also been used as pre-catalyst for activating anilines and CO2 to form a variety of 1,3-diaryl ureas up to 95 % yield. The mechanistic investigation for CO2 mitigation is done by 125 Te NMR and HRMS studies. It seems that the reaction proceeds via formation of catalytically active Te-N heterocycle, an ebtellur intermediate which is isolated and structurally characterized.

3.
J Org Chem ; 88(11): 7401-7424, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37171187

RESUMO

Herein, we report a blue-light-driven amination of C(sp2)-H bond of naphthoquinones and quinones with the N-H bond of primary and secondary amines for the synthesis of 2-amino-naphthoquinones and 2-amino-quinones. The coupling of naphthoquinones with a wide array of aliphatic, aromatic, chiral, primary, and secondary amines having electron donating (-CH3, -OCH3, -SCH3), withdrawing (-F, -Cl, -Br, -I), and CO2H, -OH, -NH2 groups with acidic protons selectively occurred to afford C-N coupled 2-amino-naphthoquinones in 60-99% yields and hydrogen gas as a byproduct in methanol solvent without using any additional reagents, additives, and oxidant under the blue light irradiation. Mechanistic insight by DFT computation, controlled experiments, kinetic isotopic effect, and substitution effect of the substrates suggest that the reaction proceeds by radical pathway in which naphthoquinone forms a highly oxidizing naphthoquinonyl biradical upon irradiation of blue light (457 nm). Consequently, electron transfer from electron-rich amine to an oxidizing naphthoquinonyl biradical leads to a naphthoquinonyl radical anion and aminyl radical cation, followed by proton transfer and delocalization leading to a carbon-centered naphthoquinonyl radical. The cross-coupling of naphthoquinonyl carbon-centered and aminyl nitrogen radicals forms a C-N bond, with subsequent elimination of hydrogen gas (which was also confirmed by GC-TCD), affording 2-amino-1,4-naphthoquinone under metal-, reagent-, base-, and oxidant-free conditions.

4.
Inorg Chem ; 61(23): 8729-8745, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35638247

RESUMO

Chalcogen-bonding interactions have recently gained considerable attention in the field of synthetic chemistry, structure, and bonding. Here, three organo-spiroselenuranes, having a Se(IV) center with a strong intramolecular Se···N chalcogen-bonded interaction, have been isolated by the oxidation of the respective bis(2-benzamide) selenides derived from an 8-aminoquinoline ligand. Further, the synthesized spiroselenuranes, when assayed for their antioxidant activity, show disproportionation of hydrogen peroxide into H2O and O2 with first-order kinetics with respect to H2O2 for the first time by any organoselenium molecules as monitored by 1H NMR spectroscopy. Electron-donating 5-methylthio-benzamide ring-substituted spiroselenurane disproportionates hydrogen peroxide at a high rate of 15.6 ± 0.4 × 103 µM min-1 with a rate constant of 8.57 ± 0.50 × 10-3 s-1, whereas 5-methoxy and unsubstituted-benzamide spiroselenuranes catalyzed the disproportionation of H2O2 at rates of 7.9 ± 0.3 × 103 and 2.9 ± 0.3 × 103 µM min-1 with rate constants of 1.16 ± 0.02 × 10-3 and 0.325 ± 0.025 × 10-3 s-1, respectively. The evolved oxygen gas from the spiroselenurane-catalyzed disproportion of H2O2 has also been confirmed by a gas chromatograph-thermal conductivity detector (GCTCD) and a portable digital polarographic dissolved O2 probe. Additionally, the synthesized spiroselenuranes exhibit thiol peroxidase antioxidant activities for the reduction of H2O2 by a benzenethiol co-reductant monitored by UV-visible spectroscopy. Next, the Se···N bonded spiroselenuranes have been explored as catalysts in synthetic oxidation iodolactonization and bromination of arenes. The synthesized spiroselenurane has activated I2 toward the iodolactonization of alkenoic acids under base-free conditions. Similarly, efficient chemo- and regioselective monobromination of various arenes with NBS catalyzed by chalcogen-bonded synthesized spiroselenuranes has been achieved. Mechanistic insight into the spiroselenuranes in oxidation reactions has been gained by 77Se NMR, mass spectrometry, UV-visible spectroscopy, single-crystal X-ray structure, and theoretical (DFT, NBO, and AIM) studies. It seems that the highly electrophilic nature of the selenium center is attributed to the presence of an intramolecular Se···N interaction and a vacant coordination site in spiroselenuranes is crucial for the activation of H2O2, I2, and NBS. The reaction of H2O2, I2, and NBS with tetravalent spiroselenurane would lead to an octahedral-Se(VI) intermediate, which is reduced back to Se(IV) due to thermodynamic instability of selenium in its highest oxidation state and the presence of a strong intramolecular N-donor atom.


Assuntos
Peróxido de Hidrogênio , Selênio , Antioxidantes/química , Benzamidas , Catálise , Peróxido de Hidrogênio/química , Oxirredução , Selênio/química
5.
ACS Pharmacol Transl Sci ; 6(1): 171-180, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36650888

RESUMO

SARS-CoV-2 main protease (Mpro/3CLpro) is a crucial target for therapeutics, which is responsible for viral polyprotein cleavage and plays a vital role in virus replication and survival. Recent studies suggest that 2-phenylbenzisoselenazol-3(2H)-one (ebselen) is a potent covalent inhibitor of Mpro, which affects its enzymatic activity and virus survival. Herein, we synthesized various ebselen derivatives to understand the mechanism of Mpro inhibition by ebselen. Using ebselen derivatives, we characterized the detailed interaction mechanism with Mpro. We discovered that modification of the parent ebselen inhibitor with an electron-withdrawing group (NO2) increases the inhibition efficacy by 2-fold. We also solved the structure of an Mpro complex with an ebselen derivative showing the mechanism of inhibition by blocking the catalytic Cys145 of Mpro. Using a combination of crystal structures and LC-MS data, we showed that Mpro hydrolyzes the new ebselen derivative and leaves behind selenium (Se) bound with Cys145 of the catalytic dyad of Mpro. We also described the binding profile of ebselen-based inhibitors using molecular modeling predictions supported by binding and inhibition assays. Furthermore, we have also solved the crystal structure of catalytically inactive mutant H41N-Mpro, which represents the inactive state of the protein where the substrate binding pocket is blocked. The inhibited structure of H41N-Mpro shows gatekeeper residues in the substrate binding pocket responsible for blocking the substrate binding; mutation of these gatekeeper residues leads to hyperactive Mpro.

6.
Chem Commun (Camb) ; 58(50): 7050-7053, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35647756

RESUMO

A one pot Cu(I)-assisted synthetic methodology has been developed for the preparation of biologically important C2-symmetric spirodiaza, benzyloxy and benzoxytelluranes from 2-bromo-N-aryl benzamides, benzyl alcohols, and benzoic acids by using the tellurium dianion (Te2-) under base-free conditions. Furthermore, C-C coupled biaryl 1,1'-diamides have been prepared by using an excess of Na2Te under the same reaction conditions. The synthesized spirodiazatelluranes served as a potent catalyst for the reduction of H2O2 and nitro-Michael reactions.


Assuntos
Cobre , Telúrio , Catálise , Peróxido de Hidrogênio , Íons
7.
Dalton Trans ; 52(1): 159-174, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36475549

RESUMO

Selenium-derived electrocatalysts have been well explored for electrocatalytic hydrogen evolution reactions to mimic hydrogenase-like activity; however, the stability of these synthetic mimics is yet to be enhanced. In this study, we report the synthesis and characterization of a series of 1,10-phenanthroline-cobalt(II) phenolate selenoether complexes using 1,10-phenanthroline and 6-nitro-1,10-phenanthroline-Co(II)-dichloride and substituted bis-selenophenolate ligands. The synthesized cobalt(II) phenolate selenoether complexes have been characterized by CHN analysis, mass spectrometry, single crystal XRD, and UV-visible absorption spectroscopy. These complexes show electrocatalytic proton reduction from acetic acid at an overpotential of 0.45-0.56 V vs. Fc+/Fc and surpass previously reported selenium and sulfur-containing electrocatalysts. Furthermore, gas analysis from control potential electrolysis confirms that the cobalt(II) selenoethers act as electrocatalysts to produce H2 with a faradaic efficiency of 43-83% and show a turnover number of 3.24-58.60 molcat-1. The hydrogen evolution reaction (HER) was probed using deuterated acetic acid, which demonstrates an inverse kinetic isotopic effect (KIE) and is consistent with the formation of metal hydride intermediates. Furthermore, control experiments (post-dip analysis and multiple CV studies) have been performed to support the catalysis being due to a homogeneous process. Acid titration using UV-visible spectroscopy reveals that protonation is the prior step for electrocatalysis and assists in the formation of a cobalt hydride intermediate, which upon reaction with a proton generates hydrogen gas.


Assuntos
Hidrogenase , Selênio , Prótons , Hidrogenase/química , Cobalto/química , Hidrogênio/química
8.
Dalton Trans ; 50(41): 14576-14594, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34590653

RESUMO

To date, organoseleniums are pre-eminent for peroxide decomposition and radical quenching antioxidant activities. On the contrary, here, a series of Janus-faced aminophenolic diselenides have been prepared from substituted 2-iodoaniline and selenium powder using copper-catalyzed methodology. Subsequently, condensation with substituted salicylaldehyde afforded the Schiff base, which on reduction, yielded the desired substituted aminophenolic diselenides in 72%-88% yields. The generation of reactive oxygen species (ROS) from oxygen gas by the synthesized aminophenolic diselenides was studied by analyzing the oxidation of dichlorofluorescein diacetate (DCFDA) dye and para-nitro-thiophenol by fluorescence and UV-Visible spectroscopic methods. Furthermore, density functional theory calculations and crystal structure analysis revealed the role of functional amine and hydroxyl sites present in the Janus-faced organoselenium catalyst for the activation of molecular oxygen, where NH and phenolic groups bring the oxygen molecule close to the catalyst by N-H⋯O and O-H⋯O intermolecular interactions. Additionally, these functionalities stabilize the selenium-centered radical in the formed transition states. Antioxidant activities of the synthesized diselenides have been explored as the catalyst for the decomposition of hydrogen peroxide using benzenethiol sacrificial co-reductant by a well-established thiol assay. Radical quenching antioxidant activity was studied by the quenching of DPPH radicals at 516 nm by UV-Visible spectroscopy. The structure activity correlation suggests that the electron-rich phenol and electron-rich and sterically hindered selenium center enhance the oxidizing property of the aminophenolic diselenides. Janus-faced diselenides were also evaluated for their cytotoxic effect on HeLa cancer cells via MTT assay, which suggests that the compounds are effective at 15-18 µM concentration against cancer cells. Moreover, the combination with therapeutic anticancer drugs Erlotinib and Doxorubicin showed promising cytotoxicity at the nanomolar concentration (8-28 nM), which is sufficient to suppress the growth of the cancer cells.


Assuntos
Compostos Organosselênicos
9.
Dalton Trans ; 48(21): 7249-7260, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-30747185

RESUMO

A copper catalyzed efficient synthetic method has been developed to access bis(N-arylbenzamide) selenides from 2-halo-N-arylbenzamide substrates and disodium selenide in HMPA at 110 °C. The developed protocol tolerates substituents in both N-aryl and benzamide rings of the 2-halobenzamide substrates and provides an array of bis(N-arylbenzamide) selenides in practical yields. The resulting selenides were transformed into hypervalent spirodiazaselenuranes by oxidation using aqueous hydrogen peroxide. (N-(1-Naphthyl)) spirodiazaselenurane is also structurally characterized by a single crystal X-ray study. Hydroxy-substituted spiroselenuranes have been prepared by careful demethylation of methoxy-substituted selenides followed by oxidation by hydrogen peroxide. Antioxidant properties for the decomposition of hydrogen peroxide and for the deactivation of radicals of hydroxy-substituted spiroselenuranes have been studied by the thiol assay and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. Both hydroxy-substituted spiroselenuranes exhibit dual mimic functions of glutathione peroxidase (GPx) selenoenzyme and α-tocopherol for decomposition of hydrogen peroxide and deactivation of radicals, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA