Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Fluoresc ; 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37897516

RESUMO

In our work, a novel series of europium (III) (Eu3+) (5, 10 and 15 wt %) doped cobalt tetroxide@cupric oxide (Co3O4@CuO) nanomaterials (NMs) were synthesized by facile coprecipitation method. The synthesized NMs were characterized by XRD (X-ray diffraction), FT-IR (Fourier transform infrared), UV (ultraviolet)-visible absorption spectra, XPS (X-ray photoelectron), BET (Brunauer-Emmett-Teller) analytical methods. Crystal structure studies revealed the formation of polycrystalline nature with monoclinic and cubic phase. The morphology studies of Eu3+x:Co3O4@CuO (x = 5, 10 and 15 wt %) showed petal shape nanoparticles (NPs) with agglomeration. Redshift in optical absorption spectra appeared with a significant impact on the optical band gap as Eu3+ concentration increases on Co3O4@CuO bimetallic oxide NMs. The chemical composition and valence state of the elements confirmed from XPS studies detected the presence of Eu, Cu, Co, O and C elements. An increase in the pore size and surface area resulted as the Eu3+ concentration increased on Co3O4@CuO NMs. However, room temperature photoluminescence (RTPL) spectra of Co3O4@CuO bimetallic oxide NMs at two different excitations (λ excitation = 280 nm, 320 nm) showed sharp, strong emission intensities located at near ultraviolet (NUV) region and weak emissions detected at far ultraviolet (FUV) regions of the RTPL spectrum. Further, visible range emission intensities were displayed by Eu3+:Co3O4@CuO (5, 10 and 15 wt %) NMs when exited at 280 nm. The characteristic white light emission peaks in the visible range of the RTPL spectra showed intense blue, green and orange colours. Emission intensity increases with an increase in Eu3+ concentration on Co3O4@CuO bimetallic oxide NMs. The fluorescence (FL) decay spectra of Eu3+ 10wt% and 15 wt%: Co3O4@CuO NMs showed a decay lifetime of 2.54 and 2.31 ns (ns) attributed to the dynamic, ultrafast excitation energy transfer between Eu3+ (dopant) and Co3O4@CuO (host) NMs. It is proposed that enhanced RTPL emission intensity and FL decay behavior of Eu3+x:Co3O4@CuO NMs closely related to the change in the optical band gap, variation in the crystallite size, formation of more number of oxygen vacancies in the crystal structure of hybrid nanomaterials.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36988124

RESUMO

A Al2O3/MnO2/TiO2 (AlMnTiO) nanocomposite was synthesized using the thermal coprecipitation method and the adsorption performance of methyl orange (MO) dye from aqueous solution was carried out. Single-parameter optimization was used to explore the properties of AlMnTiO nanocomposite parameters on dye adsorption, including dose of adsorbent, solution pH, contact duration, and starting MO concentration. The model is the appropriate adsorption isotherm for the equilibrium process using a pseudo-second-order kinetic model property. Langmuir plot had a Qmax (mg/g) of 198.4 and best fitted (R2=0.990) among different isotherm models. The relevant parameters were computed using the dual-energy binary-layer statistical physics model. The statistical physics binary-layer model yield n (stoichiometric coefficient) values of 0.410, 0.440, and 0.453, all values are below 1, demonstrating the multi-docking process. AlMnTiO nanocomposite was regenerated up to six times, making the material extremely cost-effective. Using AlMnTiO nanocomposite, MO dye was removed from wastewater both in the laboratory and on the industrial scale.


Assuntos
Nanocompostos , Poluentes Químicos da Água , Adsorção , Compostos de Manganês , Óxidos , Física , Nanocompostos/química , Concentração de Íons de Hidrogênio , Cinética , Poluentes Químicos da Água/análise
3.
Environ Res ; 205: 112201, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34655605

RESUMO

To materialize the excellent photocatalyst for crystal violet dye-degradation, the graphitic carbon-encapsulated vanadium pentoxide (GC-V2O5) nanocomposites were synthesized through the simple sonication method by using the green tea waste-derived GC nanoflakes and the sonochemically synthesized V2O5 nanorods. The nanocomposites were confirmed to comprise an aggregated morphology, in which the orthorhombic V2O5 nanorods were well anchored with the intertwingled GC nanoflakes. Owing to the encapsulation of defective V2O5 by conductive GC, the GC-V2O5 nanocomposites exhibited the enhanced photocatalytic dye-degradation efficiency up to 98.4% within 105 min. Namely, the encapsulated GC nanosheets might compensate the native defects (i.e., charge traps) on the V2O5 surface; hence, the charge transport could be enhanced during the dye-degradation process while the photocarrier recombination could be suppressed. The results suggest the conducting layer-encapsulated semiconducting oxide nanocomposites (e.g., GC-V2O5) to be of good use for future green environmental technology, particularly, as a superb photocatalyst for dye degradation.


Assuntos
Grafite , Nanocompostos , Carbono , Catálise , Violeta Genciana , Grafite/química
4.
Environ Res ; 214(Pt 4): 114091, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36041538

RESUMO

This study investigated the effectiveness of extended aeration system (EAS) and rice straw activated carbon-extended aeration system (RAC-EAS) in the treatment of pulp and paper biorefinery effluent (PPBE). RAC-EAS focused on the efficient utilization of lignocellulosic biomass waste (rice straw) as a biosorbent in the treatment process. The experiment was designed by response surface methodology (RSM) and conducted using a bioreactor that operated at 1-3 days hydraulic retention times (HRT) with PPBE concentrations at 20, 60 and 100%. The bioreactor was fed with real PPBE having initial ammonia-N and total phosphorus (TP) concentrations that varied between 11.74 and 59.02 mg/L and 31-161 mg/L, respectively. Findings from the optimized approach by RSM indicated 84.51% and 91.71% ammonia-N and 77.62% and 84.64% total phosphorus reduction in concentration for EAS and RAC-EAS, respectively, with high nitrification rate observed in both bioreactors. Kinetic model optimization indicated that modified stover models was the best suited and were statistically significant (R2 ≥ 0.98) in the analysis of substrate removal rates for ammonia-N and total phosphorus. Maximum nutrients elimination was attained at 60% PPBE and 48 h HRT. Therefore, the model can be utilized in the design and optimization of EAS and RAC-EAS systems and consequently in the prediction of bioreactor behavior.


Assuntos
Amônia , Reatores Biológicos , Nitrificação , Nitrogênio , Nutrientes , Fósforo , Esgotos , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias
5.
J Mol Liq ; 368(A)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38130892

RESUMO

Nanomaterials by virtue of their small size and enhanced surface area, present unique physicochemical properties that enjoy widespread applications in bioengineering, biomedicine, biotechnology, disease diagnosis, and therapy. In recent years, graphene and its derivatives have attracted a great deal of attention in various applications, including photovoltaics, electronics, energy storage, catalysis, sensing, and biotechnology owing to their exceptional structural, optical, thermal, mechanical, and electrical. Graphene is a two-dimensional sheet of sp2 hybridized carbon atoms of atomic thickness, which are arranged in a honeycomb crystal lattice structure. Graphene derivatives are graphene oxide (GO) and reduced graphene oxide (rGO), which are highly oxidized and less oxidized forms of graphene, respectively. Another form of graphene is graphene quantum dots (GQDs), having a size of less than 20 nm. Contemporary graphene research focuses on using graphene nanomaterials for biomedical purposes as they have a large surface area for loading biomolecules and medicine and offer the potential for the conjugation of fluorescent dyes or quantum dots for bioimaging. The present review begins with the synthesis, purification, structure, and properties of graphene nanomaterials. Then, we focussed on the biomedical application of graphene nanomaterials with special emphasis on drug delivery, bioimaging, biosensing, tissue engineering, gene delivery, and chemotherapy. The implications of graphene nanomaterials on human health and the environment have also been summarized due to their exposure to their biomedical applications. This review is anticipated to offer useful existing understanding and inspire new concepts to advance secure and effective graphene nanomaterials-based biomedical devices.

6.
J Fluoresc ; 27(3): 1067-1073, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28205067

RESUMO

This paper reports on the synthesis of a novel donor-acceptor conjugated polymers, P1 and P2 by solvent free eutectic melt polymerization reaction. Triisopropylsilylethynyl(TIPS) substituted benzo[1,2-b:4,5-b']dithiophene(BDT) is used as donor, thienithiophene(TT) and thienopyrroledione(TPD) are utilized as acceptors for demonstrating eutectic polymerization. The most important fact in the solvent-free reaction between solid reactants actually proceeds through bulk liquid phases. Such liquid phases are possible due to the formation of eutectics between the reactants and product(s) and any evolution of heat. Naphthalene is explored in this reaction for forming eutectics with the reactants, resulting in desired polymers. Thermal stability, optical and electrochemical properties of these polymers were determined. Optical band gaps of the polymers were found to be 1.58 and 1.65 eV. Electrochemical studies by cyclic voltametry experiment revealed HOMO and LUMO energy levels to be -5.22, -5.60 eV, and -3.76, -4.16 eV, respectively. The polymers were thermally stable up to 285-400 °C. Thermal, optical and electrochemical studies indicated these materials to be promising candidates in organic electronic applications.

7.
J Fluoresc ; 27(2): 419-425, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28070796

RESUMO

A series of novel tricoumarin-pyridines have been synthesized by the reaction of 4-formyl coumarins and substituted 3-acetylcoumarin with ammonium acetate for the application in organic electronics as well as fluorescent dyes. The structures of all new compounds were confirmed and characterized by IR, 1H NMR and ESI-Mass analysis. All the important photo physical prerequisites for organic electronic application such as strong and broad optical absorption, thermal stability were determined for the synthesized molecules. Optical properties were studied by UV-Vis absorption and fluorescence spectroscopy. Optical band gaps of the tricoumarin-pyridines were found to be 2.72-3.10 eV as calculated from their onset absorption edge. The tricoumarin-pyridines were thermally stable up to 290-370 °C as determined by thermogravimetric analysis (TGA). Photophysical studies indicate the synthesized materials are promising candidates for organic electronic applications.

8.
J Fluoresc ; 26(3): 1045-52, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27056185

RESUMO

A novel thiadiazolo[3,4-c]pyridine] based donor-acceptor (D-A) copolymer, poly[4,8-bis(triisopropylsilylethynyl)benzo[1,2-b:4,5-b']dithiophene-2,6-diyl-alt-[4,7-bis(4-(2-ethylhexyl)thiophen-2-yl)-[1,2,5]thiadiazolo[3,4-c]pyridine] (PTBDTPT), containing triisopropylsilylethynyl(TIPS)benzo[1,2-b:4,5-b']dithiophene as a donor is synthesized by Stille polymerization reaction. All the important photo physical prerequisites for organic field-effect transistor (OFET) application such as strong and broad optical absorption, thermal stability, and compatible HOMO-LUMO levels can be accomplished and combined on one macromolecule. Optical band gap of the polymer was found to be 1.61 eV as calculated from its film onset absorption edge. The hole mobility of bottom gate OFET using the synthesized polymer as an active channel is found to be 1.92 X 10(-2) cm V(-1) s(-1) with the On/Off ratio of 25. The photophysical study suggests that PTBDTPT is promising candidate for future large area organic electronic applications.

9.
J Fluoresc ; 26(1): 371-6, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26581213

RESUMO

This paper reports on the synthesis and characterization of novel donor-acceptor (D-A) conjugated polymers containing triisopropylsilylethyny(TIPS)benzo[1,2-b:4,5-b']dithiophene-diketopyrrolopyrrole (P1 and P2) through Stille co-polymerization method. Thermal stability, optical and electrochemical properties of these polymers were determined. Optical band gaps of the polymers as calculated from their film onset absorption edges were found to be 1.46 and 1.44 eV, respectively. Electrochemical studies revealed HOMO and LUMO energy levels to be -5.22, -5.60 eV, and -3.76, -4.16 eV, respectively. The polymers were thermally stable up to 400-440 °C. Optoelectronic studies indicated that these materials to be promising candidates in solar cell applications.

10.
J Nanosci Nanotechnol ; 16(3): 2796-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27455711

RESUMO

A novel diketopyrrolopyrrole (DPP) based low band gap polymer, poly[4,8-bis(triisopropylsilylethynyl) benzo[1,2-b:4,5-b']dithiophene-2,6-diyl-alt-[2,5-di-hexyl-3,6-dithiophen-2-ylpyrrolo[3,4-c]pyrrole-1,4-dione] (PTIPSBDT-DPP) is synthesized by Stille polymerization for use in thin film transistor (TFTs). The new polymer contain extended aromatic π-conjugated segments alternating with the DPP units and are designed to increase the free energy for charge generation to overcome current limitations in photocurrent generation. In this study we describe the synthesis, thermal stability, optical, electrochemical properties and TFT characteristics.


Assuntos
Polímeros/química , Pirróis/química , Polimerização
11.
Nanomaterials (Basel) ; 13(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37686966

RESUMO

Solvent-free mechanochemical synthesis of efficient and low-cost double perovskite (DP), like a cage of Prussian blue (PB) and PB analogs (PBAs), is a promising approach for different applications such as chemical sensing, energy storage, and conversion. Although the solvent-free mechanochemical grinding approach has been extensively used to create halide-based perovskites, no such reports have been made for cyanide-based double perovskites. Herein, an innovative solvent-free mechanochemical synthetic strategy is demonstrated for synthesizing Fe4[Fe(CN)6]3, Co3[Fe(CN)6]2, and Ni2[Fe(CN)6], where defect sites such as carbon-nitrogen vacancies are inherently introduced during the synthesis. Among all the synthesized PB analogs, the Ni analog manifests a considerable electrocatalytic oxygen evolution reaction (OER) with a low overpotential of 288 mV to obtain the current benchmark density of 20 mA cm-2. We hypothesize that incorporating defects, such as carbon-nitrogen vacancies, and synergistic effects contribute to high catalytic activity. Our findings pave the way for an easy and inexpensive large-scale production of earth-abundant non-toxic electrocatalysts with vacancy-mediated defects for oxygen evolution reaction.

12.
Dalton Trans ; 52(46): 17061-17083, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37861455

RESUMO

Lithium-ion batteries (LIBs) remain at the forefront of energy research due to their capability to deliver high energy density. Understanding their degradation mechanism has been essential due to their rapid engagement in modern electric vehicles (EVs), where battery failure may incur huge losses to human life and property. The literature on this intimidating issue is rapidly growing and often very complex. This review strives to succinctly present current knowledge contributing to a more comprehensible understanding of the degradation mechanism. First, this review explains the fundamentals of LIBs and various degradation mechanisms. Then, the degradation mechanism of novel Li-rich cathodes, advanced characterization techniques for identifying it, and various theoretical models are presented and discussed. We emphasize that the degradation process is not only tied to the charge-discharge cycles; synthesis-induced stress also plays a vital role in catalyzing the degradation. Finally, we propose further studies on advanced battery materials that can potentially replace the layered cathodes.

13.
Nanomaterials (Basel) ; 13(16)2023 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-37630914

RESUMO

Designing efficient electrocatalytic systems through facile synthesis remains a formidable task. To address this issue, this paper presents the design of a combination material comprising two transition metal oxides (copper oxide and manganese oxide (CuO/MnO2)), synthesized using a conventional microwave technique to efficiently engage as an active oxygen evolution reaction (OER) catalyst. The structural and morphological properties of the composite were confirmed by the aid of X-ray diffraction (XRD) studies, field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), and energy-dispersive spectrometry (EDS). FESEM clearly indicated well-aligned interlacing of CuO with MnO2. The OER performance was carried out in 1 M KOH. The assembled CuO/MnO2 delivered a benchmark current density (j = 10 mA cm-2) at a minimal overpotential (η = 294 mV), while pristine CuO required a high η (316 mV). Additionally, the CuO/MnO2 electrocatalyst exhibited stability for more than 15 h. These enhanced electrochemical performances were attributed to the large volume and expanded diameter of the pores, which offer ample surface area for catalytic reactions to boost OER. Furthermore, the rate kinetics of the OER are favored in composite due to low Tafel slope (77 mV/dec) compared to CuO (80 mV/dec).

14.
J Colloid Interface Sci ; 633: 589-597, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36481422

RESUMO

In the rapid development of organic light-emitting diodes (OLEDs), phosphorescent transition metal complexes have played a crucial role as the most promising candidates for next generation display and lighting applications. However, most devices are fabricated using iridium and platinum-based complexes which are expensive and available in very limited quantities, whereas using relatively abundant organometallic complexes for fabrication results mostly in inefficient performance results. To overcome these issues, we have synthesized tetra copper iodide with tetra triphenyl cage like structure (denoted as CIPh) as an emerging class of luminescent material by mechanochemical grinding followed by thermal treatment for application in white OLED. The CIPh complex exhibits considerable quantum yield and a millisecond decay lifetime. Phosphorescent OLEDs were fabricated using CIPh complex as emitter shows a remarkable performance with external quantum efficiency and current efficiency of 5.28 % and 22.76 cd/A, with a high brightness of 4200 cd m-2, respectively. White OLEDs were also fabricated with a fluorescent blue and phosphorescent red emitted with (CIPh) as green emitter and achieved an impressive CRI of 82 with an EQE of over 3 %. This is the first ever attempt at fabricating WOLEDs using organocopper complex.

15.
Anal Sci ; 39(8): 1413-1423, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37280486

RESUMO

The study reports the synthesis of chemosensor (E)-2-(1-(3-aminophenyl)ethylideneamino)benzenethiol (C1), a highly sensitive, colorimetric metal probe that shows distinct selectivity for the detection of Cu2+ ion in various real water samples. Upon complexation with Cu2+ in CH3OH/H2O (60:40 v/v) (aqueous methanol), the C1 demonstrate significant enhancement in the absorption at 250 nm and 300 nm with a color change from light yellow to brown which was visualized using naked-eye. Therefore, these properties make C1 as an effective candidate for on-site Cu2+ ions detection. The emission spectrum of C1 illustrated "TURN-ON" recognition of Cu2+ with a limit of detection (LOD) of 46 nM. Furthermore, Density Functional Theory (DFT) calculations were performed to better understand the interactions between C1 and Cu2+. The obtained results suggested that the electron clouds present around the -NH2 in nitrogen and sulfur in -SH play a pivotal role in the formation of a stable complex. The computational results were in good agreement with the experimental UV-visible spectrometry results.

16.
Nanomaterials (Basel) ; 13(20)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37887901

RESUMO

Organic-inorganic hybrid perovskite materials continue to attract significant interest due to their optoelectronic application. However, the degradation phenomenon associated with hybrid structures remains a challenging aspect of commercialization. To overcome the stability issue, we have assembled the methylammonium lead bromide nano islands (MNIs) on the backbone of poly-3-dodecyl-thiophene (PDT) for the first time. The structural and morphological properties of the MNI-PDT composite were confirmed with the aid of X-ray diffraction (XRD) studies, Field emission scanning electron microscope (FESEM), and X-ray photoelectron spectroscopy (XPS). The optical properties, namely absorption studies, were carried out by ultraviolet-visible spectroscopy. The fluorescent behavior is determined by photoluminescence (PL) spectroscopy. The emission peak for the MNI-PDT was observed at 536 nm. The morphology studies supported by FESEM indicated that the nano islands are completely covered on the surface of the polymer backbone, making the hybrid (MNI-PDT) stable under environmental conditions for three months. The interfacial interaction strategy developed in the present work will provide a new approach for the stabilization of hybrids for a longer time duration.

17.
Int J Biol Macromol ; 253(Pt 3): 126948, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37722634

RESUMO

Today, dyes/pigment-based materials are confronting a serious issue in harming marine ecology. Annihilate these serious water pollutants using photoactive 2D nanohybrid catalysts showed promising comparativeness over available photocatalysts. In the present work, a facile route to decorate Ruthenium (Ru) on 2D MgB2 flower-like nanostructures was developed via ecofriendly guar gum biopolymer substantial template (MgB2/GG@Ru NFS) and its photocatalytic performance was reported. Synthesis of MgB2@Ru, MgB2/GG@Ru NFS and commercial MgB2, was studied by FTIR, XRD, FE-SEM, EDX, AFM, TEM, UV-vis spectra, and XPS analysis. From the results, the MgB2/GG@Ru NFS exhibited a superior photocatalytic performance (99.7 %) than its precursors MgB2@Ru (79.7 %), and MgB2 (53.7 %), with the degradation efficiency of the crystal violet (CV) within 100 min under visible light irradiation. The proposed photo-catalyst MgB2/GG@Ru NFS showed negligible loss of photocatalytic activity even after five successive cycles, revealing its reusability and enhanced stability due to the network structure. The photocatalytic mechanism for MgB2/GG@Ru NFS was evaluated by trapping experiment of active species, verifying that superoxide (O2-) and electron (e-) contributed significant role in the dye degradation.


Assuntos
Nanoestruturas , Rutênio , Violeta Genciana , Luz , Nanoestruturas/química , Corantes/química
18.
Int J Biol Macromol ; 253(Pt 5): 127154, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37793524

RESUMO

The rising demand for green and clean energy urges the enlargement of economical and proficient electrode materials for supercapacitors. Herein, we designed a novel electrode material by porous cellulose graphitic carbon (CC) derived from bio-waste cornhusk via the pyrolysis route, and α-Fe2O3 decorated nanostructure with CC (CCIO) was achieved in situ pyrolysis of corn-husk and Fe(NO3)3·9H2O metal salt followed by a coating of polypyrrole (CCIOP). The CC, CCIO, and CCIOP nanocomposite electrodes were characterized by XRD, Raman, FTIR, FE-SEM/EDX, FE-TEM, XPS, and BET analysis. The CCIOP nanocomposite electrode exhibits an enhanced specific capacitance (Csp) of 290.9 F/g, which is substantial to its pristine CC (128.3 F/g), PPy (140.3 F/g), and CCIO (190.7 F/g). The Csp of CCIOP in a three-electrode system, using 1 M Na2SO4 electrolyte exhibits excellent capacity retention of 79.1 % even at a high current density of 10 A/g. The as-fabricated asymmetric supercapacitor (ASC) delivered a remarkable capacity retention of 88.7 % with a coulombic efficiency of 98.8 % even after 3000 cycles. The study shows successful utilization of cellulose from bio-waste cornhusk into a substantial template applicable in future alternative energy storage devices.


Assuntos
Grafite , Nanocompostos , Polímeros , Celulose , Carbono , Pirróis , Eletrodos
19.
Chemosphere ; 308(Pt 1): 136162, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36037951

RESUMO

Examination of highly proficient photoactive materials for the degradation of antibiotics from the aqueous solution is the need of the hour. In the present study, a 2D/2D binary junction GCM, formed between graphitic-carbon nitride (g-C3N4) and molybdenum disulphide (MoS2), was synthesized using facile hydrothermal method and its photo-efficacy was tested for the degradation of sulfasalazine (SUL) from aqueous solution under visible-light irradiation. Morphological analysis indicated the nanosheets arrangement of MoS2 and g-C3N4. The visible-light driven experiments indicated that 97% antibiotic was degraded by GCM-30% within 90 min which was found to be quite high than pristine g-C3N4 and MoS2 at solution pH of 6, GCM-30% dose of 20 mg, and SUL concentration of 20 mgL-1. The degradation performance of GCM-30% was selectively improved due to enhanced visible-light absorption, high charge carrier separation, and high redox ability of the photogenerated charges which was induced by the effective Z-scheme 2D/2D heterojunction formed between g-C3N4 and MoS2. The reactive radicals as determined by the scavenging study were •O2-, and h+. A detailed degradation mechanism of SUL by GCM-30% was also predicted based on the detailed examination of the band gaps of g-C3N4 and MoS2.


Assuntos
Molibdênio , Sulfassalazina , Antibacterianos , Catálise , Luz
20.
Chemosphere ; 296: 133973, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35181435

RESUMO

Herein, the two synthesis strategies are employed for rational design of 0D/2DAg-Ag2S-CdS heterojunctions towards photocatalytic degradation of methyl orange (MO) under simulated solar light. As the first strategy, a ternary Ag-Ag2S-CdS nanosheet (NS) heterojunction was fabricated via combined cation exchange and photo-reduction (CEPR) method (Ag-Ag2S-CdS/CEPR). The second strategy employed coprecipitation (CP) method (Ag-Ag2S-CdS/CP). Strikingly, SEM, TEM and HR-TEM images are manifested the first strategy is beneficial for retaining the original thickness (20.2 nm) of CdS NSs with a dominant formation of metallic Ag, whereas the second strategy increases the thickness (33.4 nm) of CdS NSs with a dominant formation of Ag2S. The Ag-Ag2S-CdS/CEPR exhibited 1.8-fold and 3.5-fold enhancement in photocatalytic activities as compared to those of Ag-Ag2S-CdS/CP and bare CdS NSs, respectively. This enhanced photocatalytic activity could be ascribed to fact that the first strategy produces a high-quality interface with intimate contact between the Ag-Ag2S-CdS heterojunctions, resulting in enhanced separation of photo-excited charge carriers, extended light absorption, and enriched active-sites. Furthermore, the degradation efficiency of Ag-Ag2S-CdS/CEPR was significantly reduced to ∼5% in the presence of BQ (•O2- scavenger), indicating that •O2- is the major active species that can decompose MO dye under simulated solar light.


Assuntos
Poluentes Ambientais , Catálise , Luz , Fotólise , Luz Solar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA