Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 164(3): 1443-55, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24443525

RESUMO

Plants need to finely balance resources allocated to growth and immunity to achieve optimal fitness. A tradeoff between pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and brassinosteroid (BR)-mediated growth was recently reported, but more information about the underlying mechanisms is needed. Here, we identify the basic helix-loop-helix (bHLH) transcription factor homolog of brassinosteroid enhanced expression2 interacting with IBH1 (HBI1) as a negative regulator of PTI signaling in Arabidopsis (Arabidopsis thaliana). HBI1 expression is down-regulated in response to different PAMPs. HBI1 overexpression leads to reduced PAMP-triggered responses. This inhibition correlates with reduced steady-state expression of immune marker genes, leading to increased susceptibility to the bacterium Pseudomonas syringae. Overexpression of the HBI1-related bHLHs brassinosteroid enhanced expression2 (BEE2) and cryptochrome-interacting bHLH (CIB1) partially inhibits immunity, indicating that BEE2 and CIB1 may act redundantly with HBI1. In contrast to its expression pattern upon PAMP treatment, HBI1 expression is enhanced by BR treatment. Also, HBI1-overexpressing plants are hyperresponsive to BR and more resistant to the BR biosynthetic inhibitor brassinazole. HBI1 is nucleus localized, and a mutation in a conserved leucine residue within the first helix of the protein interaction domain impairs its function in BR signaling. Interestingly, HBI1 interacts with several inhibitory atypical bHLHs, which likely keep HBI1 under negative control. Hence, HBI1 is a positive regulator of BR-triggered responses, and the negative effect of PTI is likely due to the antagonism between BR and PTI signaling. This study identifies a novel component involved in the complex tradeoff between innate immunity and BR-regulated growth.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/imunologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Imunidade Vegetal , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Brassinosteroides/biossíntese , Brassinosteroides/farmacologia , Sequência Conservada/genética , Regulação para Baixo , Regulação da Expressão Gênica de Plantas , Genes Dominantes , Imunidade Inata , Leucina/genética , Dados de Sequência Molecular , Mutação/genética , Ligação Proteica , Receptores de Reconhecimento de Padrão/metabolismo , Homologia de Sequência de Aminoácidos
2.
EMBO J ; 28(21): 3428-38, 2009 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-19763086

RESUMO

In plant innate immunity, the surface-exposed leucine-rich repeat receptor kinases EFR and FLS2 mediate recognition of the bacterial pathogen-associated molecular patterns EF-Tu and flagellin, respectively. We identified the Arabidopsis stromal-derived factor-2 (SDF2) as being required for EFR function, and to a lesser extent FLS2 function. SDF2 resides in an endoplasmic reticulum (ER) protein complex with the Hsp40 ERdj3B and the Hsp70 BiP, which are components of the ER-quality control (ER-QC). Loss of SDF2 results in ER retention and degradation of EFR. The differential requirement for ER-QC components by EFR and FLS2 could be linked to N-glycosylation mediated by STT3a, a catalytic subunit of the oligosaccharyltransferase complex involved in co-translational N-glycosylation. Our results show that the plasma membrane EFR requires the ER complex SDF2-ERdj3B-BiP for its proper accumulation, and provide a demonstration of a physiological requirement for ER-QC in transmembrane receptor function in plants. They also provide an unexpected differential requirement for ER-QC and N-glycosylation components by two closely related receptors.


Assuntos
Proteínas de Arabidopsis/imunologia , Arabidopsis/imunologia , Retículo Endoplasmático/metabolismo , Doenças das Plantas/imunologia , Receptores de Reconhecimento de Padrão/imunologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Imunidade Inata , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/metabolismo
3.
J Biol Chem ; 286(12): 10793-802, 2011 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-21252225

RESUMO

Most plant glycoproteins contain substantial amounts of paucimannosidic N-glycans instead of their direct biosynthetic precursors, complex N-glycans with terminal N-acetylglucosamine residues. We now demonstrate that two ß-N-acetylhexosaminidases (HEXO1 and HEXO3) residing in different subcellular compartments jointly account for the formation of paucimannosidic N-glycans in Arabidopsis thaliana. Total N-glycan analysis of hexo knock-out plants revealed that HEXO1 and HEXO3 contribute equally to the production of paucimannosidic N-glycans in roots, whereas N-glycan processing in leaves depends more heavily on HEXO3 than on HEXO1. Because hexo1 hexo3 double mutants do not display any obvious phenotype even upon exposure to different forms of abiotic or biotic stress, it should be feasible to improve the quality of glycoprotein therapeutics produced in plants by down-regulation of endogenous ß-N-acetylhexosaminidase activities.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Raízes de Plantas/enzimologia , beta-N-Acetil-Hexosaminidases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Técnicas de Silenciamento de Genes , Raízes de Plantas/genética , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Polissacarídeos/genética , Polissacarídeos/metabolismo , Estresse Fisiológico/fisiologia , beta-N-Acetil-Hexosaminidases/genética
4.
Proc Natl Acad Sci U S A ; 106(37): 15973-8, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19717464

RESUMO

Plant innate immunity depends in part on recognition of pathogen-associated molecular patterns (PAMPs), such as bacterial flagellin, EF-Tu, and fungal chitin. Recognition is mediated by pattern-recognition receptors (PRRs) and results in PAMP-triggered immunity. EF-Tu and flagellin, and the derived peptides elf18 and flg22, are recognized in Arabidopsis by the leucine-rich repeat receptor kinases (LRR-RK), EFR and FLS2, respectively. To gain insights into the molecular mechanisms underlying PTI, we investigated EFR-mediated PTI using genetics. A forward-genetic screen for Arabidopsis elf18-insensitive (elfin) mutants revealed multiple alleles of calreticulin3 (CRT3), UDP-glucose glycoprotein glucosyl transferase (UGGT), and an HDEL receptor family member (ERD2b), potentially involved in endoplasmic reticulum quality control (ER-QC). Strikingly, FLS2-mediated responses were not impaired in crt3, uggt, and erd2b null mutants, revealing that the identified mutations are specific to EFR. A crt3 null mutant did not accumulate EFR protein, suggesting that EFR is a substrate for CRT3. Interestingly, Erd2b did not accumulate CRT3 protein, although they accumulate wild-type levels of other ER proteins. ERD2B seems therefore to be a specific HDEL receptor for CRT3 that allows its retro-translocation from the Golgi to the ER. These data reveal a previously unsuspected role of a specific subset of ER-QC machinery components for PRR accumulation in plant innate immunity.


Assuntos
Proteínas de Arabidopsis/imunologia , Arabidopsis/imunologia , Retículo Endoplasmático/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/fisiologia , Alelos , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Sequência de Bases , Calreticulina/genética , Calreticulina/imunologia , Calreticulina/fisiologia , Primers do DNA/genética , Retículo Endoplasmático/genética , Retículo Endoplasmático/fisiologia , Genes de Plantas , Glucosiltransferases/genética , Glucosiltransferases/imunologia , Glucosiltransferases/fisiologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Imunidade Inata/genética , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Proteínas de Membrana/fisiologia , Mutação , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Proteínas Quinases/genética , Proteínas Quinases/imunologia , Proteínas Quinases/fisiologia , Pseudomonas syringae/imunologia , Pseudomonas syringae/patogenicidade , Transdução de Sinais
5.
PLoS Genet ; 5(1): e1000355, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19180193

RESUMO

Intercellular signaling plays an important role in controlling cellular behavior in apical meristems and developing organs in plants. One prominent example in Arabidopsis is the regulation of floral organ shape, ovule integument morphogenesis, the cell division plane, and root hair patterning by the leucine-rich repeat receptor-like kinase STRUBBELIG (SUB). Interestingly, kinase activity of SUB is not essential for its in vivo function, indicating that SUB may be an atypical or inactive receptor-like kinase. Since little is known about signaling by atypical receptor-like kinases, we used forward genetics to identify genes that potentially function in SUB-dependent processes and found recessive mutations in three genes that result in a sub-like phenotype. Plants with a defect in DETORQEO (DOQ), QUIRKY (QKY), and ZERZAUST (ZET) show corresponding defects in outer integument development, floral organ shape, and stem twisting. The mutants also show sub-like cellular defects in the floral meristem and in root hair patterning. Thus, SUB, DOQ, QKY, and ZET define the STRUBBELIG-LIKE MUTANT (SLM) class of genes. Molecular cloning of QKY identified a putative transmembrane protein carrying four C(2) domains, suggesting that QKY may function in membrane trafficking in a Ca(2+)-dependent fashion. Morphological analysis of single and all pair-wise double-mutant combinations indicated that SLM genes have overlapping, but also distinct, functions in plant organogenesis. This notion was supported by a systematic comparison of whole-genome transcript profiles during floral development, which molecularly defined common and distinct sets of affected processes in slm mutants. Further analysis indicated that many SLM-responsive genes have functions in cell wall biology, hormone signaling, and various stress responses. Taken together, our data suggest that DOQ, QKY, and ZET contribute to SUB-dependent organogenesis and shed light on the mechanisms, which are dependent on signaling through the atypical receptor-like kinase SUB.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas Quinases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Clonagem Molecular , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Perfilação da Expressão Gênica , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Dados de Sequência Molecular , Mutação , Fenótipo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Proteínas Quinases/genética , Receptores Proteína Tirosina Quinases
6.
Biochem Soc Trans ; 38(2): 583-7, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20298225

RESUMO

Plant organs, such as ovules and flowers, arise through cellular events that are precisely co-ordinated between cells within and across clonally distinct cell layers. Receptor-like kinases are cell-surface receptors that perceive and relay intercellular information. In Arabidopsis the leucine-rich repeat receptor-like kinase STRUBBELIG (SUB) is required for integument initiation and outgrowth during ovule development, floral organ shape and the control of the cell division plane in the first subepidermal cell layer of floral meristems, among other functions. A major goal is to understand SUB-mediated signal transduction at the molecular level. Present evidence suggests that SUB affects neighbouring cells in a non-cell-autonomous fashion. In addition, our results indicate that SUB is an atypical, or kinase-dead, kinase. Forward genetics identified three genes, QUIRKY (QKY), ZERZAUST and DETORQUEO, that are thought to contribute to SUB-dependent signal transduction. QKY encodes a predicted membrane-bound protein with four cytoplasmic C(2) domains. By analogy to animal proteins with related domain topology, we speculate that QKY may be involved in Ca(2+)-dependent signalling and membrane trafficking. Studying SUB-dependent signalling will contribute to our understanding of how atypical kinases mediate signal transduction and how cells co-ordinate their behaviour to allow organs, such as ovules, to develop their three-dimensional architecture.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/embriologia , Comunicação Celular/genética , Óvulo Vegetal/embriologia , Proteínas Quinases/fisiologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Padronização Corporal/genética , Comunicação Celular/fisiologia , Regulação da Expressão Gênica de Plantas , Modelos Biológicos , Óvulo Vegetal/crescimento & desenvolvimento , Óvulo Vegetal/fisiologia , Proteínas Quinases/genética , Receptores Proteína Tirosina Quinases , Transdução de Sinais/fisiologia
7.
Dev Biol ; 323(2): 261-70, 2008 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18771664

RESUMO

In plants important questions relate to the mechanisms that control signaling between the histogenic cell layers of apical meristems and developing organs. The Arabidopsis putative atypical leucine-rich repeat receptor-like kinase STRUBBELIG (SUB) regulates amongst others floral organ shape, the plane of cell division in cells of the first subepidermal cell layer of floral meristems, ovule integument morphogenesis, and root hair patterning. Reporter assays using a functional translational fusion between SUB and EGFP indicate that SUB expression is largely confined to interior tissues in young flowers, ovules, and roots. In contrast, SUB mRNA expression can be monitored in all cell layers of those tissues. Specifically, SUB protein is not detectable in cells that show a sub mutant phenotype. Rather, SUB is detected in directly neighbouring cells in flower and ovule primordia, or in cells that are separated from mutant cells by two cell diameters in the root. Inhibitor studies corroborate a posttranscriptional regulation of SUB. Phenotypic analysis of sub-1 plants expressing a SUB:EGFP gene under the control of tissue and epidermis-specific promoters support the notion that SUB-dependent signal transduction relies on the production of secondary intercellular signals. The combined results indicate that SUB acts in a non-cell-autonomous fashion, functions in a radial inside-out signaling process, and mediates cell morphogenesis and cell fate across clonally distinct cell layers in floral primordia, developing ovules, and root meristems.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/enzimologia , Flores/embriologia , Flores/enzimologia , Proteínas Quinases/metabolismo , Transdução de Sinais , Arabidopsis/embriologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Brefeldina A/farmacologia , Divisão Celular/efeitos dos fármacos , Flores/citologia , Flores/ultraestrutura , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/metabolismo , Leupeptinas/farmacologia , Mutação/genética , Proteínas Quinases/genética , Receptores Proteína Tirosina Quinases , Transdução de Sinais/efeitos dos fármacos , Transgenes
8.
PLoS One ; 6(5): e19730, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21603601

RESUMO

Tissue morphogenesis in plants requires the coordination of cellular behavior across clonally distinct histogenic layers. The underlying signaling mechanisms are presently being unraveled and are known to include the cell surface leucine-rich repeat receptor-like kinase STRUBBELIG in Arabidopsis. To understand better its mode of action an extensive structure-function analysis of STRUBBELIG was performed. The phenotypes of 20 EMS and T-DNA-induced strubbelig alleles were assessed and homology modeling was applied to rationalize their possible effects on STRUBBELIG protein structure. The analysis was complemented by phenotypic, cell biological, and pharmacological investigations of a strubbelig null allele carrying genomic rescue constructs encoding fusions between various mutated STRUBBELIG proteins and GFP. The results indicate that STRUBBELIG accepts quite some sequence variation, reveal the biological importance for the STRUBBELIG N-capping domain, and reinforce the notion that kinase activity is not essential for its function in vivo. Furthermore, individual protein domains of STRUBBELIG cannot be related to specific STRUBBELIG-dependent biological processes suggesting that process specificity is mediated by factors acting together with or downstream of STRUBBELIG. In addition, the evidence indicates that biogenesis of a functional STRUBBELIG receptor is subject to endoplasmic reticulum-mediated quality control, and that an MG132-sensitive process regulates its stability. Finally, STRUBBELIG and the receptor-like kinase gene ERECTA interact synergistically in the control of internode length. The data provide genetic and molecular insight into how STRUBBELIG regulates intercellular communication in tissue morphogenesis.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/fisiologia , Morfogênese , Proteínas Quinases/química , Proteínas Quinases/fisiologia , Arabidopsis , Comunicação Celular , Inibidores de Cisteína Proteinase , Retículo Endoplasmático , Leupeptinas , Conformação Proteica , Relação Quantitativa Estrutura-Atividade , Receptores Proteína Tirosina Quinases
9.
Mol Plant ; 3(4): 740-50, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20457640

RESUMO

EFR is a plasma-membrane resident receptor responsible for recognition of microbial elongation factor Tu (EF-Tu) and thus triggering plant innate immunity to fend off phytopathogens. Functional EFR must be subject to the endoplasmic reticulum quality control (ERQC) machinery for the correct folding and proper assembly in order to reach its final destination. Genetic studies have demonstrated that ERD2b, a counterpart of the yeast or mammalian HDEL receptor ERD2 for retaining proteins in the endoplasmic reticulum (ER) lumen, is required for EFR function in plants (Li et al., 2009). In this study, we characterized the Arabidopsis glucosidase II beta-subunit via the HDEL motif against the non-redundant protein database. Data mining also revealed that the glucosidase II beta-subunit gene has a highly similar expression pattern to ERD2b and the other known ERQC components involved in EFR biogenesis. Importantly, the T-DNA insertion lines of the glucosidase II beta-subunit gene showed that EFR-controlled responses were substantially reduced or completely blocked in these mutants. The responses include seedling growth inhibition, induction of marker genes, MAP kinase activation, and callose deposition, triggered by peptide elf18, a full mimic of EF-Tu. Taken together, our data indicate a requirement of the glucosidase II beta-subunit for EFR function.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , alfa-Glucosidases/química , alfa-Glucosidases/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica de Plantas , Imunidade Inata/genética , Imunidade Inata/fisiologia , Imunoprecipitação , Dados de Sequência Molecular , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , alfa-Glucosidases/genética
10.
Proc Natl Acad Sci U S A ; 102(25): 9074-9, 2005 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-15951420

RESUMO

An open question remains as to what coordinates cell behavior during organogenesis, permitting organs to reach their appropriate size and shape. The Arabidopsis gene STRUBBELIG (SUB) defines a receptor-mediated signaling pathway in plants. SUB encodes a putative leucine-rich repeat transmembrane receptor-like kinase. The mutant sub phenotype suggests that SUB affects the formation and shape of several organs by influencing cell morphogenesis, the orientation of the division plane, and cell proliferation. Mutational analysis suggests that the kinase domain is important for SUB function. Biochemical assays using bacterially expressed fusion proteins indicate that the SUB kinase domain lacks enzymatic phosphotransfer activity. Furthermore, transgenes encoding WT and different mutant variants of SUB were tested for their ability to rescue the mutant sub phenotype. These genetic data also indicate that SUB carries a catalytically inactive kinase domain. The SUB receptor-like kinase may therefore signal in an atypical fashion.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas Quinases/metabolismo , Sequência de Aminoácidos , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sequência Conservada , Hibridização In Situ , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Mutagênese , Fenótipo , Proteínas Quinases/química , Proteínas Quinases/genética , Receptores Proteína Tirosina Quinases , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA