Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 320(2): H838-H853, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33416451

RESUMO

Although sodium glucose cotransporter 1 (SGLT1) has been identified as one of the major SGLT isoforms expressed in the heart, its exact role remains elusive. Evidence using phlorizin, the most common inhibitor of SGLTs, has suggested its role in glucose transport. However, phlorizin could also affect classical facilitated diffusion via glucose transporters (GLUTs), bringing into question the relevance of SGLT1 in overall cardiac glucose uptake. Accordingly, we assessed the contribution of SGLT1 in cardiac glucose uptake using the SGLT1 knockout mouse model, which lacks exon 1. Glucose uptake was similar in cardiomyocytes isolated from SGLT1-knockout (Δex1KO) and control littermate (WT) mice either under basal state, insulin, or hyperglycemia. Similarly, in vivo basal and insulin-stimulated cardiac glucose transport measured by micro-PET scan technology did not differ between WT and Δex1KO mice. Micromolar concentrations of phlorizin had no impact on glucose uptake in either isolated WT or Δex1KO-derived cardiomyocytes. However, higher concentrations (1 mM) completely inhibited insulin-stimulated glucose transport without affecting insulin signaling nor GLUT4 translocation independently from cardiomyocyte genotype. Interestingly, we discovered that mouse and human hearts expressed a shorter slc5a1 transcript, leading to SGLT1 protein lacking transmembrane domains and residues involved in glucose and sodium bindings. In conclusion, cardiac SGLT1 does not contribute to overall glucose uptake, probably due to the expression of slc5a1 transcript variant. The inhibitory effect of phlorizin on cardiac glucose uptake is SGLT1-independent and can be explained by GLUT transporter inhibition. These data open new perspectives in understanding the role of SGLT1 in the heart.NEW & NOTEWORTHY Ever since the discovery of its expression in the heart, SGLT1 has been considered as similar as the intestine and a potential contributor to cardiac glucose transport. For the first time, we have demonstrated that a slc5a1 transcript variant is present in the heart that has no significant impact on cardiac glucose handling.


Assuntos
Glucose/metabolismo , Miócitos Cardíacos/metabolismo , Transportador 1 de Glucose-Sódio/metabolismo , Animais , Transporte Biológico , Células Cultivadas , Transportador de Glucose Tipo 4/antagonistas & inibidores , Transportador de Glucose Tipo 4/metabolismo , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Florizina/farmacologia , Isoformas de Proteínas , Ratos Wistar , Transportador 1 de Glucose-Sódio/antagonistas & inibidores , Transportador 1 de Glucose-Sódio/genética
3.
Nitric Oxide ; 86: 63-67, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30836135

RESUMO

OBJECTIVE: This study evaluated in obese rats the effect of exercise training on eNOS expressed in perivascular adipose tissue (PVAT) and its consequences on vascular function. METHODS: Wistar rats were divided in 3 groups: control (standard diet), obese (high fat/high sucrose diet, HFS for 15 weeks), and exercised obese (HFS diet and exercise from week 6 to week 15, HFS-Ex) rats. The eNOS-adiponectin pathway and reactive oxygen species (ROS) were evaluated. Vascular reactivity was assessed on isolated aortic rings with or without PVAT and/or endothelium and exposed or not to the conditioned media of PVAT. RESULTS: Obesity reduced eNOS level and phosphorylation on its activation site in the PVAT and had no impact on the vascular wall. Exercise training was able to increase eNOS and P-eNOS both in the vascular wall and in the PVAT. Interestingly, this was associated with increased level of adiponectin in the PVAT and to lower ROS in the vascular wall. Finally, PVAT of HFS-Ex aorta has eNOS-dependent anticontractile effects on endothelium denuded aortic rings and has beneficial effects on the endothelium-dependent vasorelaxation to ACh. CONCLUSION: Exercise training in obese rats is able to impact PVAT eNOS with subsequent beneficial impact on vascular function.


Assuntos
Tecido Adiposo/metabolismo , Endotélio Vascular/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Obesidade/metabolismo , Adiponectina/metabolismo , Animais , Aorta/metabolismo , Dieta da Carga de Carboidratos/efeitos adversos , Dieta Hiperlipídica/efeitos adversos , Ativação Enzimática/fisiologia , Masculino , Óxido Nítrico Sintase Tipo III/química , Obesidade/prevenção & controle , Fosforilação/fisiologia , Condicionamento Físico Animal , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
4.
Am J Physiol Heart Circ Physiol ; 314(3): H497-H507, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29127233

RESUMO

Sympathetic hyperactivation, a common feature of obesity and metabolic syndrome, is a key trigger of hypertension. However, some obese subjects with autonomic imbalance present a dissociation between sympathetic activity-mediated vasoconstriction and increased blood pressure. Here, we aimed to determine in a rat model of metabolic syndrome whether the endothelium endothelial nitric oxide (NO) synthase (eNOS)-NO pathway contributes to counteract the vasopressor effect of the sympathetic system. Rats were fed a high-fat and high-sucrose (HFS) diet for 15 wk. Sympathovagal balance was evaluated by spectral analysis of heart rate variability and plasmatic catecholamine measurements. Blood pressure was measured in the presence or absence of N-nitro-l-arginine methyl ester (l-NAME) to inhibit the contribution of eNOS. Vascular reactivity was assessed on isolated aortic rings in response to α1-adrenergic agonist. The HFS diet increased sympathetic tone, which is characterized by a higher low on the high-frequency spectral power ratio and a higher plasmatic concentration of epinephrine. Despite this, no change in blood pressure was observed. Interestingly, HFS rats exhibited vascular hyporeactivity (-23.6%) to α1-adrenergic receptor stimulation that was abolished by endothelial removal or eNOS inhibition (l-NAME). In addition, eNOS phosphorylation (Ser1177) was increased in response to phenylephrine in HFS rats only. Accordingly, eNOS inhibition in vivo revealed higher blood pressure in HFS rats compared with control rats (147 vs. 126 mmHg for mean blood pressure, respectively). Restrain of adrenergic vasopressor action by endothelium eNOS is increased in HFS rats and contributes to maintained blood pressure in the physiological range. NEW & NOTEWORTHY Despite the fact that prohypertensive sympathetic nervous system activity is markedly increased in rats with early metabolic syndrome, they present with normal blood pressure. These observations appear to be explained by increased endothelial nitric oxide synthase response to adrenergic stimulation, which results in vascular hyporeactivity to α-adrenergic stimulation, and therefore blood pressure is preserved in the physiological range. Listen to this article's corresponding podcast at http://www.physiology.org/doi/10.1152/ajpheart.00217.2017 .


Assuntos
Aorta/inervação , Pressão Arterial , Endotélio Vascular/inervação , Síndrome Metabólica/fisiopatologia , Sistema Nervoso Simpático/fisiopatologia , Vasoconstrição , Animais , Aorta/metabolismo , Dieta Hiperlipídica , Sacarose Alimentar , Modelos Animais de Doenças , Endotélio Vascular/metabolismo , Epinefrina/sangue , Frequência Cardíaca , Masculino , Síndrome Metabólica/etiologia , Síndrome Metabólica/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Norepinefrina/sangue , Ratos Wistar , Receptores Adrenérgicos alfa 1/metabolismo , Transdução de Sinais , Sistema Nervoso Simpático/metabolismo
6.
Basic Res Cardiol ; 111(4): 40, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27164904

RESUMO

Obesity and diabetes are associated with higher cardiac vulnerability to ischemia-reperfusion (IR). The cardioprotective effect of regular exercise has been attributed to ß3-adrenergic receptor (ß3AR) stimulation and increased endothelial nitric oxide synthase (eNOS) activation. Here, we evaluated the role of the ß3AR-eNOS pathway and NOS isoforms in exercise-induced cardioprotection of C57Bl6 mice fed with high fat and sucrose diet (HFS) for 12 weeks and subjected or not to exercise training during the last 4 weeks (HFS-Ex). HFS animals were more sensitive to in vivo and ex vivo IR injuries than control (normal diet) and HFS-Ex mice. Cardioprotection in HFS-Ex mice was not associated with increased myocardial eNOS activation and NO metabolites storage, possibly due to the ß3AR-eNOS pathway functional loss in their heart. Indeed, a selective ß3AR agonist (BRL37344) increased eNOS activation and had a protective effect against IR in control, but not in HFS hearts. Moreover, iNOS expression, nitro-oxidative stress (protein s-nitrosylation and nitrotyrosination) and ROS production during early reperfusion were increased in HFS, but not in control mice. Exercise normalized iNOS level and reduced protein s-nitrosylation, nitrotyrosination and ROS production in HFS-Ex hearts during early reperfusion. The iNOS inhibitor 1400 W reduced in vivo infarct size in HFS mice to control levels, supporting the potential role of iNOS normalization in the cardioprotective effects of exercise training in HFS-Ex mice. Although the ß3AR-eNOS pathway is defective in the heart of HFS mice, regular exercise can protect their heart against IR by reducing iNOS expression and nitro-oxidative stress.


Assuntos
Traumatismo por Reperfusão Miocárdica/metabolismo , Óxido Nítrico Sintase Tipo II/biossíntese , Obesidade/complicações , Condicionamento Físico Animal/fisiologia , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Isquemia Miocárdica/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Receptores Adrenérgicos beta 3/metabolismo
7.
EBioMedicine ; 107: 105264, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39121579

RESUMO

BACKGROUND: The metabolic environment plays a crucial role in the development of heart failure (HF). Our prior research demonstrated that myo-inositol, a metabolite transported by the sodium-myo-inositol co-transporter 1 (SMIT-1), can induce oxidative stress and may be detrimental to heart function. However, plasmatic myo-inositol concentration has not been comprehensively assessed in large cohorts of patients with heart failure with reduced ejection fraction (HFrEF) and heart failure with preserved ejection fraction (HFpEF). METHODS: Plasmatic myo-inositol levels were measured using mass spectrometry and correlated with clinical characteristics in no HF subjects and patients with HFrEF and HFpEF from Belgian (male, no HF, 53%; HFrEF, 84% and HFpEF, 40%) and Canadian cohorts (male, no HF, 51%; HFrEF, 92% and HFpEF, 62%). FINDINGS: Myo-inositol levels were significantly elevated in patients with HF, with a more pronounced increase observed in the HFpEF population of both cohorts. After adjusting for age, sex, body mass index, hypertension, diabetes, and atrial fibrillation, we observed that both HFpEF status and impaired kidney function were associated with elevated plasma myo-inositol. Unlike HFrEF, abnormally high myo-inositol (≥69.8 µM) was linked to unfavourable clinical outcomes (hazard ratio, 1.62; 95% confidence interval, [1.05-2.5]) in patients with HFpEF. These elevated levels were correlated with NTproBNP, troponin, and cardiac fibrosis in this subset of patients. INTERPRETATION: Myo-inositol is a metabolite elevated in patients with HF and strongly correlated to kidney failure. In patients with HFpEF, high myo-inositol levels predict poor clinical outcomes and are linked to markers of cardiac adverse remodelling. This suggests that myo-inositol and its transporter SMIT1 may have a role in the pathophysiology of HFpEF. FUNDING: BECAME-HF was supported by Collaborative Bilateral Research Program Québec - Wallonie-Brussels Federation.

8.
Adv Nutr ; 12(4): 1500-1513, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-33578411

RESUMO

The excess consumption of added sugar is consistently found to be associated with weight gain, and a higher risk of type 2 diabetes mellitus, coronary heart disease, and stroke. In an effort to reduce the risk of cardiometabolic disease, sugar is frequently replaced by low- and null-calorie sweeteners (LCSs). Alarmingly, though, emerging evidence indicates that the consumption of LCSs is associated with an increase in cardiovascular mortality risk that is amplified in those who are overweight or obese. Sucralose, a null-caloric high-intensity sweetener, is the most commonly used LCS worldwide, which is regularly consumed by healthy individuals and patients with metabolic disease. To explore a potential causal role for sucralose in increased cardiovascular risk, this present review summarizes the preclinical and clinical data from current research detailing the effects of sucralose on systems controlling food intake, glucose homeostasis, and gut microbiota.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Adoçantes não Calóricos , Humanos , Adoçantes não Calóricos/efeitos adversos , Sacarose/análogos & derivados
9.
Sci Rep ; 11(1): 13700, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34211080

RESUMO

Sepsis capillary leak syndrome (SCLS) is an independent prognostic factor for poor sepsis outcome. We previously demonstrated that α1AMP-activated protein kinase (α1AMPK) prevents sepsis-induced vascular hyperpermeability by mechanisms involving VE-cadherin (VE-Cad) stabilization and activation of p38 mitogen activated protein kinase/heat shock protein of 27 kDa (p38MAPK/HSP27) pathway. Canagliflozin, a sodium-glucose co-transporter 2 inhibitor, has recently been proven to activate AMPK in endothelial cells. Therefore, we hypothesized that canagliflozin could be of therapeutic potential in patients suffering from SCLS. We herein report that canagliflozin, used at clinically relevant concentrations, counteracts lipopolysaccharide-induced vascular hyperpermeability and albumin leakage in wild-type, but not in endothelial-specific α1AMPK-knockout mice. In vitro, canagliflozin was demonstrated to activate α1AMPK/p38MAPK/HSP27 pathway and to preserve VE-Cad's integrity in human endothelial cells exposed to human septic plasma. In conclusion, our data demonstrate that canagliflozin protects against SCLS via an α1AMPK-dependent pathway, and lead us to consider novel therapeutic perspectives for this drug in SCLS.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Canagliflozina/uso terapêutico , Síndrome de Vazamento Capilar/prevenção & controle , Ativação Enzimática/efeitos dos fármacos , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Animais , Canagliflozina/farmacologia , Síndrome de Vazamento Capilar/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia
10.
Arch Cardiovasc Dis ; 113(11): 736-748, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33189592

RESUMO

Besides coronary artery disease, which remains the main cause of heart failure in patients with diabetes, factors independent of coronary artery disease are involved in the development of heart failure in the onset of what is called diabetic cardiomyopathy. Among them, hyperglycaemia - a hallmark of type 2 diabetes - has both acute and chronic deleterious effects on myocardial function, and clearly participates in the establishment of diabetic cardiomyopathy. In the present review, we summarize the cellular and tissular events that occur in a heart exposed to hyperglycaemia, and depict the complex molecular mechanisms proposed to be involved in glucotoxicity. Finally, from a more translational perspective, different therapeutic strategies targeting hyperglycaemia-mediated molecular mechanisms will be detailed.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus/sangue , Cardiomiopatias Diabéticas/sangue , Insuficiência Cardíaca/sangue , Hiperglicemia/sangue , Miocárdio/metabolismo , Animais , Glicemia/efeitos dos fármacos , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/epidemiologia , Cardiomiopatias Diabéticas/epidemiologia , Cardiomiopatias Diabéticas/fisiopatologia , Cardiomiopatias Diabéticas/prevenção & controle , Insuficiência Cardíaca/epidemiologia , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/prevenção & controle , Humanos , Hiperglicemia/tratamento farmacológico , Hiperglicemia/epidemiologia , Hipoglicemiantes/uso terapêutico , Miocárdio/patologia , Fatores de Risco , Transdução de Sinais
11.
J Nutr Biochem ; 40: 95-104, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27866076

RESUMO

Oxidative stress could trigger lipid accumulation in liver and thus hepatic steatosis. Tea is able to prevent liver disorders, but a direct link between antioxidant capacities and prevention of steatosis has not been reported yet. We aimed to investigate such relationship in a rat model of high fat-high sucrose diet (HFS)-induced obesity and to explore more deeply the mechanisms in isolated hepatocytes. Wistar rats were divided into a control group (standard diet), an HFS group (high fat-sucrose diet) and an HFS+tea group (HFS diet with ad-libitum access to tea drink). Body weight, fat mass, glycemic parameters in blood, lipid and oxidative stress parameters in blood and liver were measured in each group after 14 weeks. Isolated hepatocytes were treated with the reactive oxygen species (ROS) inducer t-BHP in the presence or not of antioxidants (tempol or tea), and superoxide anion production and lipid accumulation were measured using specific fluorescent probes. We reported that the HFS diet highly increased hepatic lipids content, while tea consumption attenuated steatosis and improved the oxidative status (decrease in hepatic oxidative stress, increase in plasma total antioxidant capacity). The role of antioxidant properties of tea in such phenomenon was confirmed in primary cultured rat hepatocytes. Indeed, the increase of mitochondrial ROS production with t-BHP resulted in lipid accumulation in hepatocytes (positive linear regression), and antioxidants (tempol or tea) normalized both. We reported that the antioxidant properties of tea protect rats from an obesogenic HFS diet-induced hepatic steatosis by counteracting the ROS-dependent lipogenesis.


Assuntos
Antioxidantes/farmacologia , Dieta Hiperlipídica/efeitos adversos , Lipogênese/fisiologia , Hepatopatia Gordurosa não Alcoólica/dietoterapia , Chá , Animais , Antioxidantes/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Hepatócitos/metabolismo , Peroxidação de Lipídeos , Masculino , Hepatopatia Gordurosa não Alcoólica/etiologia , Obesidade/dietoterapia , Obesidade/fisiopatologia , Estresse Oxidativo , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Chá/química
12.
Sci Rep ; 7: 41166, 2017 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-28128227

RESUMO

Hyperglycemia (HG) stimulates the production of reactive oxygen species in the heart through activation of NADPH oxidase 2 (NOX2). This production is independent of glucose metabolism but requires sodium/glucose cotransporters (SGLT). Seven SGLT isoforms (SGLT1 to 6 and sodium-myoinositol cotransporter-1, SMIT1) are known, although their expression and function in the heart remain elusive. We investigated these 7 isoforms and found that only SGLT1 and SMIT1 were expressed in mouse, rat and human hearts. In cardiomyocytes, galactose (transported through SGLT1) did not activate NOX2. Accordingly, SGLT1 deficiency did not prevent HG-induced NOX2 activation, ruling it out in the cellular response to HG. In contrast, myo-inositol (transported through SMIT1) reproduced the toxic effects of HG. SMIT1 overexpression exacerbated glucotoxicity and sensitized cardiomyocytes to HG, whereas its deletion prevented HG-induced NOX2 activation. In conclusion, our results show that heart SMIT1 senses HG and triggers NOX2 activation. This could participate in the redox signaling in hyperglycemic heart and contribute to the pathophysiology of diabetic cardiomyopathy.


Assuntos
Proteínas de Choque Térmico/metabolismo , Hiperglicemia/metabolismo , Miocárdio/metabolismo , NADPH Oxidase 2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Simportadores/metabolismo , Animais , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Proteínas de Choque Térmico/genética , Humanos , Masculino , Camundongos , Ratos , Transportador 1 de Glucose-Sódio , Simportadores/genética
13.
Hypertens Res ; 39(2): 70-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26537830

RESUMO

Exercise training is a well-recognized way to improve vascular endothelial function by increasing nitric oxide (NO) bioavailability. However, in hypertensive subjects, unlike low- and moderate-intensity exercise training, the beneficial effects of continuous high-intensity exercise on endothelial function are not clear, and the underlying mechanisms remain unknown. The aim of this study was to investigate the impact of high-intensity exercise on vascular function, especially on the NO pathway, in spontaneous hypertensive rats (SHR). These effects were studied on WKY, sedentary SHR and SHR that exercised at moderate (SHR-MOD) and high intensity (SHR-HI) on a treadmill (1 h per day; 5 days per week for 6 weeks at 55% and 80% of their maximal aerobic velocity, respectively). Endothelial function and specific NO contributions to acetylcholine-mediated relaxation were evaluated by measuring the aortic ring isometric forces. Endothelial nitric oxide synthase (eNOS) expression and phosphorylation (ser1177) were evaluated by western blotting. The total aortic and eNOS-dependent reactive oxygen species (ROS) production was assessed using electron paramagnetic resonance in aortic tissue. Although the aortas of SHR-HI had increased eNOS levels without alteration of eNOS phosphorylation, high-intensity exercise had no beneficial effect on endothelium-dependent vasorelaxation, unlike moderate exercise. This result was associated with increased eNOS-dependent ROS production in the aortas of SHR-HI. Notably, the use of the recoupling agent BH4 or a thiol-reducing agent blunted eNOS-dependent ROS production in the aortas of SHR-HI. In conclusion, the lack of a positive effect of high-intensity exercise on endothelial function in SHR was mainly explained by redox-dependent eNOS uncoupling, resulting in a switch from NO to O2(-) generation.


Assuntos
Endotélio Vascular/fisiopatologia , Óxido Nítrico Sintase Tipo III/metabolismo , Condicionamento Físico Animal , Acetilcolina/farmacologia , Limiar Anaeróbio , Animais , Aorta Torácica/efeitos dos fármacos , Hipertensão/fisiopatologia , Hipertensão/terapia , Contração Isométrica , Masculino , Óxido Nítrico/metabolismo , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Espécies Reativas de Oxigênio/metabolismo , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA