Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 129(10): 1296-1307, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28011675

RESUMO

Two subsets of blood monocytes are commonly described in mice and humans: the classical inflammatory monocytes, which are rapidly mobilized upon inflammation in a CC-chemokine receptor 2-dependent manner, and the nonclassical blood resident monocyte subset that patrols the intraluminal side of the endothelium. Old reports suggest that blood monocytes are distributed into circulating and marginating pools, but no direct evidence of the latter has been obtained so far. Using a combination of in vivo real-time imaging and blood/tissue partitioning by intravascular staining of leukocytes, we showed that both inflammatory and resident monocytes are retained in the bone marrow vasculature, representing an important reservoir of marginated monocytes. Upon lipopolysaccharide or cecal ligation and puncture-induced peritonitis, these marginated cells are rapidly released and recruited to the peritoneum membrane lumen vasculature where they reside through CX3C-chemokine receptor 1 (CX3CR1)-dependent adherence. At a later time point, inflammatory monocytes infiltrate the spleen parenchyma but remain mainly intravascular in the vicinity of the lungs and the peritoneum. Our results show that this monocyte deployment is controlled by a CX3CR1-dependent balance between marginating and circulating monocytes and highlight that tissue infiltration is not a mandatory fate for inflammatory monocytes.


Assuntos
Quimiotaxia de Leucócito/imunologia , Endotélio Vascular/imunologia , Inflamação/imunologia , Monócitos/imunologia , Receptores de Quimiocinas/imunologia , Animais , Antígenos Ly , Receptor 1 de Quimiocina CX3C , Adesão Celular/imunologia , Modelos Animais de Doenças , Citometria de Fluxo , Imunofluorescência , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/citologia
2.
FASEB J ; 30(6): 2370-81, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26979087

RESUMO

CC chemokine receptor type 2 (CCR2) is a key molecule in inflammatory diseases and is an obvious drug target for the treatment of inflammation. A number of nonpeptidic, competitive CCR2 antagonists have been developed, but none has yet been approved for clinical use. Our aim was to identify a short peptide that showed allosteric antagonism against human and mouse CCR2. On the basis of sequence analysis and 3-dimensional modeling, we identified an original 7-d-amino acid peptidic CCR2 inhibitor that we have called extracellular loop 1 inverso (ECL1i), d(LGTFLKC). In vitro, ECL1i selectively and potently inhibits CC chemokine ligand type 2 (CCL2)-triggered chemotaxis (IC50, 2 µM) but no other conventional CCL2-associated events. We used the classic competitive CCR2 antagonist, BMS22 {2-[(isopropylaminocarbonyl)amino]-N-[2-[[cis-2-[[4-(methylthio)benzoyl]amino]cyclohexyl]amino]-2-oxoethyl]-5-(trifluoromethyl)benzamide}, as positive control and inhibited CCL2-dependent chemotaxis with an IC50 of 18 nM. As negative control, we used a peptide with the same composition as ECL1i, but in a different sequence, d(FKLTLCG). In vivo, ECL1i (4 mg/kg) interfered with CCR2-positive cell recruitment and attenuated disease progression in experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis. This study establishes ECL1i as the first allosteric inhibitor of CCR2 with functional selectivity. ECL1i is a promising new agent in therapeutic development, and it may, by its selective effect, increase our understanding of CCR2 signaling pathways and functions.-Auvynet, C., Baudesson de Chanville, C., Hermand, P., Dorgham, K., Piesse, C., Pouchy, C., Carlier, L., Poupel, L., Barthélémy, S., Felouzis, V., Lacombe, C., Sagan, S., Salomon, B., Deterre, P., Sennlaub, F., Combadière, C. ECL1i, d(LGTFLKC), a novel, small peptide that specifically inhibits CCL2-dependent migration.


Assuntos
Movimento Celular/fisiologia , Quimiocina CCL2/metabolismo , Oligopeptídeos/farmacologia , Receptores CCR2/metabolismo , Animais , Células CHO , Quimiocina CCL2/genética , Cricetulus , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Regulação da Expressão Gênica/fisiologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Modelos Moleculares , Oligopeptídeos/química , Ligação Proteica , Conformação Proteica , Receptores CCR2/genética
3.
J Am Soc Nephrol ; 27(3): 792-803, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26160897

RESUMO

Monocytes have a crucial role in both proinflammatory and anti-inflammatory phenomena occurring during sepsis. Monocyte recruitment and activation are orchestrated by the chemokine receptors CX3CR1 and CCR2 and their cognate ligands. However, little is known about the roles of these cells and chemokines during the acute phase of inflammation in sepsis. Using intravital microscopy in a murine model of polymicrobial sepsis, we showed that inflammatory Ly6C(high) monocytes infiltrated kidneys, exhibited altered motility, and adhered strongly to the renal vascular wall in a chemokine receptor CX3CR1-dependent manner. Adoptive transfer of Cx3cr1-proficient monocyte-enriched bone marrow cells into septic Cx3cr1-depleted mice prevented kidney damage and promoted mouse survival. Modulation of CX3CR1 activation in septic mice controlled monocyte adhesion, regulated proinflammatory and anti-inflammatory cytokine expression, and was associated with the extent of kidney lesions such that the number of lesions decreased when CX3CR1 activity increased. Consistent with these results, the pro-adhesive I249 CX3CR1 allele in humans was associated with a lower incidence of AKI in patients with sepsis. These data show that inflammatory monocytes have a protective effect during sepsis via a CX3CR1-dependent adhesion mechanism. This receptor might be a new therapeutic target for kidney injury during sepsis.


Assuntos
Injúria Renal Aguda/prevenção & controle , Reação de Fase Aguda/imunologia , Adesão Celular , Monócitos/transplante , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo , Sepse/complicações , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/patologia , Transferência Adotiva , Alelos , Animais , Antígenos Ly/análise , Receptor 1 de Quimiocina CX3C , Adesão Celular/genética , Movimento Celular , Endotélio Vascular/metabolismo , Genótipo , Humanos , Microscopia Intravital , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência por Excitação Multifotônica , Monócitos/química , Monócitos/fisiologia , Polimorfismo Genético , Receptores de Interleucina-1/antagonistas & inibidores
4.
Front Immunol ; 11: 675, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32425929

RESUMO

Sepsis is characterized by a systemic inflammation that can cause an immune dysfunction, for which the underlying mechanisms are unclear. We investigated the impact of cecal ligature and puncture (CLP)-mediated polymicrobial sepsis on monocyte (Mo) mobilization and functions. Our results show that CLP led to two consecutive phases of Mo deployment. The first one occurred within the first 3 days after the induction of the peritonitis, while the second phase was of a larger amplitude and extended up to a month after apparent clinical recovery. The latter was associated with the expansion of Mo in the tissue reservoirs (bone marrow and spleen), their release in the blood and their accumulation in the vasculature of peripheral non-lymphoid tissues. It occurred even after antibiotic treatment but relied on inflammatory-dependent pathways and inversely correlated with increased susceptibility and severity to a secondary infection. The intravascular lung Mo displayed limited activation capacity, impaired phagocytic functions and failed to transfer efficient protection against a secondary infection into monocytopenic CCR2-deficient mice. In conclusion, our work unveiled key dysfunctions of intravascular inflammatory Mo during the recovery phase of sepsis and provided new insights to improve patient protection against secondary infections.


Assuntos
Inflamação/imunologia , Monócitos/imunologia , Sepse/imunologia , Animais , Antígenos Ly/análise , Receptor 1 de Quimiocina CX3C/fisiologia , Pulmão/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/fisiologia , Neutrófilos/imunologia , Fagocitose , Receptores CCR2/fisiologia
5.
J Exp Med ; 215(10): 2536-2553, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30201786

RESUMO

Tissue-resident macrophages can self-maintain without contribution of adult hematopoiesis. Herein we show that tissue-resident interstitial macrophages (Res-TAMs) in mouse lungs contribute to the pool of tumor-associated macrophages (TAMs) together with CCR2-dependent recruited macrophages (MoD-TAMs). Res-TAMs largely correlated with tumor cell growth in vivo, while MoD-TAMs accumulation was associated with enhanced tumor spreading. Both cell subsets were depleted after chemotherapy, but MoD-TAMs rapidly recovered and performed phagocytosis-mediated tumor clearance. Interestingly, anti-VEGF treatment combined with chemotherapy inhibited both Res and Mod-TAM reconstitution without affecting monocyte infiltration and improved its efficacy. Our results reveal that the developmental origin of TAMs dictates their relative distribution, function, and response to cancer therapies in lung tumors.


Assuntos
Neoplasias Pulmonares/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Fagocitose , Animais , Neoplasias Pulmonares/patologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , Monócitos/patologia , Receptores CCR2/imunologia
6.
Cancer Res ; 76(22): 6483-6494, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27680685

RESUMO

The CCL2 chemokine receptor CCR2 drives cancer by mediating the recruitment of monocytes and myeloid-derived suppressor cells to the tumor microenvironment. In this study, we extend the significance of CCR2 in this setting by identifying a new role for it in mediating recruitment of CD4+ T regulatory cells (Treg). Following tumor initiation, an expanded population of CCR2+ Tregs required CCR2 expression to traffic between draining lymph nodes (dLN) and the tumor. This Treg subset was enriched in the fraction of tumor antigen-specific cells in the dLN, where they displayed an activated immunosuppressive phenotype. Notably, in mouse models, low-dose cyclophosphamide treatment preferentially depleted CCR2+ Treg, enhancing priming of tumor-specific CD8+ T cells. In the MMTV-PyMT transgenic mouse model of breast cancer and in oral squamous cell carcinoma patients, tumor development was associated with decreased blood frequency and inversely increased tumor frequency of CCR2+ Tregs. Our results define a novel subset of CCR2+ Treg involved in tumoral immune escape, and they offer evidence that this Treg subset may be preferentially eradicated by low-dose cyclophosphamide treatment. Cancer Res; 76(22); 6483-94. ©2016 AACR.


Assuntos
Ciclofosfamida/uso terapêutico , Linfócitos T Reguladores/imunologia , Animais , Biomarcadores , Movimento Celular , Ciclofosfamida/administração & dosagem , Ciclofosfamida/farmacologia , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Receptores CCR2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA