Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 378(2181): 20190368, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-32862819

RESUMO

Two mooring arrays carrying sediment traps were deployed from September 2011 to August 2012 at ∼83°N on each side of the Gakkel Ridge in the Nansen and Amundsen Basins to measure downward particle flux below the euphotic zone (approx. 250 m) and approximately 150 m above seafloor at approximately 3500 and 4000 m depth, respectively. In a region that still experiences nearly complete ice cover throughout the year, export fluxes of total particulate matter (TPM), particulate organic carbon (POC), particulate nitrogen (PN), biogenic matter, lithogenic matter, biogenic particulate silica (bPSi), calcium carbonate (CaCO3), protists and biomarkers only slightly decreased with depth. Seasonal variations of particulate matter fluxes were similar on both sides of the Gakkel Ridge. Somewhat higher export rates in the Amundsen Basin and differences in the composition of the sinking TPM and bPSi on each side of the Gakkel Ridge probably reflected the influence of the Lena River/Transpolar Drift in the Amundsen Basin and the influence of Atlantic water in the Nansen Basin. Low variations in particle export with depth revealed a limited influence of lateral advection in the deep barren Eurasian Basin. This article is part of the theme issue 'The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.


Assuntos
Ecossistema , Sedimentos Geológicos/química , Camada de Gelo/química , Organismos Aquáticos/metabolismo , Regiões Árticas , Biodiversidade , Ciclo do Carbono , Oceanos e Mares , Compostos Orgânicos/análise , Material Particulado/análise , Estações do Ano , Água do Mar/química
2.
Environ Sci Technol ; 52(11): 6208-6216, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29787253

RESUMO

Organophosphate esters (OPEs) have been found in remote environments at unexpectedly high concentrations, but very few measurements of OPE concentrations in seawater are available, and none are available in subsurface seawater. In this study, passive polyethylene samplers (PEs) deployed on deep-water moorings in the Fram Strait and in surface waters of Canadian Arctic lakes and coastal sites were analyzed for a suite of common OPEs. Total OPEs ( ∑11OPE) at deep-water sites were dominated by chlorinated OPEs, and ranged from 6.3 to 440 pg/L. Concentrations were similar in eastern and western Fram Strait. Chlorinated OPEs were also dominant in Canadian Arctic surface waters (mean concentration ranged from < DL to 4400 pg/L), while nonhalogenated alkyl/aryl-substituted OPEs remained low (1.3-55 pg/L), possibly due to the greater long-range transport potential of chlorinated OPEs. Polybrominated diphenyl ethers (PBDEs) were found at much lower concentrations than OPEs (

Assuntos
Retardadores de Chama , Éteres Difenil Halogenados , Regiões Árticas , Canadá , Monitoramento Ambiental , Ésteres , Organofosfatos
3.
Environ Sci Technol ; 50(12): 6172-9, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27174500

RESUMO

Little is known of the distribution of persistent organic pollutants (POPs) in the deep ocean. Polyethylene passive samplers were used to detect the vertical distribution of truly dissolved POPs at two sites in the Atlantic Ocean. Samplers were deployed at five depths covering 26-2535 m in the northern Atlantic and Tropical Atlantic, in approximately one year deployments. Samplers of different thickness were used to determine the state of equilibrium POPs reached in the passive samplers. Concentrations of POPs detected in the North Atlantic near the surface (e.g., sum of 14 polychlorinated biphenyls, PCBs: 0.84 pg L(-1)) were similar to previous measurements. At both sites, PCB concentrations showed subsurface maxima (tropical Atlantic Ocean -800 m, North Atlantic -500 m). Currents seemed more important in moving POPs to deeper water masses than the biological pump. The ratio of PCB concentrations in near surface waters (excluding PCB-28) between the two sites was inversely correlated with congeners' subcooled liquid vapor pressure, in support of the latitudinal fractionation. The results presented here implied a significant amount of HCB is stored in the Atlantic Ocean (4.8-26% of the global HCB environmental burdens), contrasting traditional beliefs that POPs do not reach the deep ocean.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Oceano Atlântico , Bifenilos Policlorados , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA