Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Drug Metab Dispos ; 50(8): 1106-1118, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35701182

RESUMO

Abrocitinib is an oral once-daily Janus kinase 1 selective inhibitor being developed for the treatment of moderate-to-severe atopic dermatitis. This study examined the disposition of abrocitinib in male participants following oral and intravenous administration using accelerator mass spectroscopy methodology to estimate pharmacokinetic parameters and characterize metabolite (M) profiles. The results indicated abrocitinib had a systemic clearance of 64.2 L/h, a steady-state volume of distribution of 100 L, extent of absorption >90%, time to maximum plasma concentration of ∼0.5 hours, and absolute oral bioavailability of 60%. The half-life of both abrocitinib and total radioactivity was similar, with no indication of metabolite accumulation. Abrocitinib was the main circulating drug species in plasma (∼26%), with 3 major monohydroxylated metabolites (M1, M2, and M4) at >10%. Oxidative metabolism was the primary route of elimination for abrocitinib, with the greatest disposition of radioactivity shown in the urine (∼85%). In vitro phenotyping indicated abrocitinib cytochrome P450 fraction of metabolism assignments of 0.53 for CYP2C19, 0.30 for CYP2C9, 0.11 for CYP3A4, and ∼0.06 for CYP2B6. The principal systemic metabolites M1, M2, and M4 were primarily cleared renally. Abrocitinib, M1, and M2 showed pharmacology with similar Janus kinase 1 selectivity, whereas M4 was inactive. SIGNIFICANCE STATEMENT: This study provides a detailed understanding of the disposition and metabolism of abrocitinib, a Janus kinase inhibitor for atopic dermatitis, in humans, as well as characterization of clearance pathways and pharmacokinetics of abrocitinib and its metabolites.


Assuntos
Dermatite Atópica , Inibidores de Janus Quinases , Pirimidinas , Sulfonamidas , Administração Oral , Dermatite Atópica/tratamento farmacológico , Humanos , Janus Quinase 1/antagonistas & inibidores , Inibidores de Janus Quinases/administração & dosagem , Inibidores de Janus Quinases/farmacocinética , Inibidores de Janus Quinases/farmacologia , Masculino , Pirimidinas/administração & dosagem , Pirimidinas/farmacocinética , Pirimidinas/farmacologia , Sulfonamidas/administração & dosagem , Sulfonamidas/farmacocinética , Sulfonamidas/farmacologia
3.
Drug Metab Dispos ; 44(1): 102-14, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26512042

RESUMO

N-Methyl-2-[3-((E)-2-pyridin-2-yl-vinyl)-1H-indazol-6-ylsulfanyl]-benzamide (axitinib) is an oral inhibitor of vascular endothelial growth factor receptors 1-3, which is approved for the treatment of advanced renal cell cancer. Human [(14)C]-labeled clinical studies indicate axitinib's primary route of clearance is metabolism. The aims of the in vitro experiments presented herein were to identify and characterize the enzymes involved in axitinib metabolic clearance. In vitro biotransformation studies of axitinib identified a number of metabolites including an axitinib sulfoxide, several less abundant oxidative metabolites, and glucuronide conjugates. The most abundant NADPH- and UDPGA-dependent metabolites, axitinib sulfoxide (M12) and axitinib N-glucuronide (M7) were selected for phenotyping and kinetic study. Phenotyping experiments with human liver microsomes (HLMs) using chemical inhibitors and recombinant human cytochrome P450s demonstrated axitinib was predominately metabolized by CYP3A4/5, with minor contributions from CYP2C19 and CYP1A2. The apparent substrate concentration at half-maximal velocity (Km) and Vmax values for the formation of axitinib sulfoxide by CYP3A4 or CYP3A5 were 4.0 or 1.9 µM and 9.6 or 1.4 pmol·min(-1)·pmol(-1), respectively. Using a CYP3A4-specific inhibitor (Cyp3cide) in liver microsomes expressing CYP3A5, 66% of the axitinib intrinsic clearance was attributable to CYP3A4 and 15% to CYP3A5. Axitinib N-glucuronidation was primarily catalyzed by UDP-glucuronosyltransferase (UGT) UGT1A1, which was verified by chemical inhibitors and UGT1A1 null expressers, with lesser contributions from UGTs 1A3, 1A9, and 1A4. The Km and Vmax values describing the formation of the N-glucuronide in HLM or rUGT1A1 were 2.7 µM or 0.75 µM and 8.9 or 8.3 pmol·min(-1)·mg(-1), respectively. In summary, CYP3A4 is the major enzyme involved in axitinib clearance with lesser contributions from CYP3A5, CYP2C19, CYP1A2, and UGT1A1.


Assuntos
Inibidores da Angiogênese/metabolismo , Citocromo P-450 CYP3A/metabolismo , Glucuronosiltransferase/metabolismo , Imidazóis/metabolismo , Indazóis/metabolismo , Microssomos Hepáticos/enzimologia , Inibidores de Proteínas Quinases/metabolismo , Axitinibe , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2C19/metabolismo , Citocromo P-450 CYP3A/genética , Inibidores das Enzimas do Citocromo P-450/farmacologia , Feminino , Genótipo , Glucuronídeos/metabolismo , Glucuronosiltransferase/genética , Humanos , Inativação Metabólica , Cinética , Masculino , Taxa de Depuração Metabólica , Microssomos Hepáticos/efeitos dos fármacos , Modelos Biológicos , Oxirredução , Fenótipo , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Sulfóxidos/metabolismo
4.
Drug Metab Dispos ; 42(10): 1627-39, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25053618

RESUMO

The contribution of drug metabolites to the pharmacologic and toxicologic activity of a drug can be important; however, for a variety of reasons metabolites can frequently be difficult to synthesize. To meet the need of having samples of drug metabolites for further study, we have developed biosynthetic methods coupled with quantitative NMR spectroscopy (qNMR) to generate solutions of metabolites of known structure and concentration. These quantitative samples can be used in a variety of ways when a synthetic sample is unavailable, including pharmacologic assays, standards for in vitro work to help establish clearance pathways, and/or as analytical standards for bioanalytical work to ascertain exposure, among others. We illustrate five examples of metabolite biosynthesis and qNMR. The types of metabolites include one glucuronide and four oxidative products. Concentrations of the isolated metabolite stock solutions ranged from 0.048 to 8.3 mM, with volumes from approximately 0.04 to 0.150 ml in hexadeutarated dimethylsulfoxide. These specific quantified isolates were used as standards in the drug discovery setting as substrates in pharmacology assays, for bioanalytical assays to establish exposure, and in variety of routine absorption, distribution, metabolism, and excretion assays, such as protein binding and determining blood-to-plasma ratios. The methods used to generate these materials are described in detail with the objective that these methods can be generally used for metabolite biosynthesis and isolation.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Microssomos Hepáticos/metabolismo , Preparações Farmacêuticas/metabolismo , Farmacologia/métodos , Padrões de Referência , Biotransformação , Feminino , Humanos , Masculino , Estrutura Molecular , Preparações Farmacêuticas/química
5.
Bioorg Med Chem Lett ; 24(4): 1144-7, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24461291

RESUMO

A design for the selective release of drug molecules in the liver was tested, involving the attachment of a representative active agent by an ester linkage to various 2-substituted 5-aminovaleric acid carbamates. The anticipated pathway of carboxylesterase-1-mediated carbamate cleavage followed by lactamization and drug release was frustrated by unexpectedly high sensitivity of the ester linkage toward hydrolysis by carboxylesterase-2 and other microsomal components.


Assuntos
Aminoácidos Neutros/farmacologia , Carbamatos/farmacologia , Carboxilesterase/antagonistas & inibidores , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Desenho de Fármacos , Fígado/efeitos dos fármacos , Aminoácidos Neutros/síntese química , Aminoácidos Neutros/química , Carbamatos/síntese química , Carbamatos/química , Carboxilesterase/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Relação Dose-Resposta a Droga , Humanos , Fígado/enzimologia , Estrutura Molecular , Relação Estrutura-Atividade
6.
Emerg Med Clin North Am ; 42(3): 485-492, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38925769

RESUMO

There is a growing incidence of heat-related illnesses due to rising global temperatures. Heat-related illnesses range from mild to severe, with heat stroke being the most critical. The wet bulb global temperature index considers humidity and solar intensity; its use is recommended to estimate heat stress on an individual and mitigate risk. Efficient cooling methods, such as cold water immersion, are essential in severe cases. Prevention is through hydration, appropriate clothing, recognition of high risk medications, and awareness of environmental conditions. Recognizing heat-related illnesses early in the clinical course and implementing rapid cooling strategies reduces morbidity and mortality.


Assuntos
Transtornos de Estresse por Calor , Humanos , Transtornos de Estresse por Calor/terapia , Transtornos de Estresse por Calor/diagnóstico , Temperatura Alta
7.
Nat Chem Biol ; 7(11): 810-7, 2011 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-21946276

RESUMO

Backbone N-methylation is common among peptide natural products and has a substantial impact on both the physical properties and the conformational states of cyclic peptides. However, the specific impact of N-methylation on passive membrane diffusion in cyclic peptides has not been investigated systematically. Here we report a method for the selective, on-resin N-methylation of cyclic peptides to generate compounds with drug-like membrane permeability and oral bioavailability. The selectivity and degree of N-methylation of the cyclic peptide was dependent on backbone stereochemistry, suggesting that conformation dictates the regiochemistry of the N-methylation reaction. The permeabilities of the N-methyl variants were corroborated by computational studies on a 1,024-member virtual library of N-methyl cyclic peptides. One of the most permeable compounds, a cyclic hexapeptide (molecular mass = 755 Da) with three N-methyl groups, showed an oral bioavailability of 28% in rat.


Assuntos
Peptídeos Cíclicos/metabolismo , Peptídeos Cíclicos/farmacocinética , Animais , Disponibilidade Biológica , Química Farmacêutica , Técnicas de Química Combinatória , Simulação por Computador , Descoberta de Drogas/métodos , Masculino , Metilação , Estrutura Molecular , Peptídeos Cíclicos/química , Ratos , Relação Estrutura-Atividade
8.
J Prev Interv Community ; 51(2): 141-154, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-31339462

RESUMO

This cross-sectional study was conducted as an experiential project in a graduate Program Evaluation class. We worked together as a team to solve difficulties that occurred when evaluating a program for the first time, including overcoming initial fears and identifying the appropriate focus. The goal of this study was to identify the most common barriers to attendance at Bridgehaven Mental Health Services, a community-based outpatient program tailored to aid in the transition from hospitals to community living. External barriers to attendance were examined by an adapted version of the Structural Barriers to Clinic Attendance Scale (SCBA) and a researcher-created qualitative measure. Between-group t-tests and non-parametric analyses indicated that a far walk from the bus stop and negative perceptions of staff behavior were significant external barriers to Bridgehaven attendance among 42 adult members with severe mental illness. Additionally, themes from the qualitative data revealed that 74.7% of members viewed other obligations and appointments as barriers to their attendance. About half of the members surveyed indicated the positive impact of groups on attendance. Overall findings revealed the importance of considering external barriers, particularly issues related to transportation, scheduling, and social perceptions when identifying solutions to declining attendance rates. Through the process of conducting this study, we learned invaluable skills (e.g., problem-solving, teamwork, collaboration, and flexibility) that will carry with us as we evaluate programs in the future.


Assuntos
Aprendizagem , Aprendizagem Baseada em Problemas , Adulto , Humanos , Estudos Transversais , Inquéritos e Questionários , Motivação
9.
Obesity (Silver Spring) ; 31(5): 1216-1226, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37013867

RESUMO

OBJECTIVE: The aim of this study was to evaluate whether dimensions of sleep quality were associated with homeostatic and hedonic eating behaviors among children with healthy weight (BMI-for-age < 90%) but varying maternal weight status. METHODS: A total of 77 children (mean [SD], age: 7.4 [0.6] years; BMI z score: -0.10 [0.7]) with healthy weight and high (n = 32) or low (n = 45) familial obesity risk based on maternal weight status were served an ad libitum meal (homeostatic eating) followed by palatable snacks to assess eating in the absence of hunger (EAH; hedonic eating). Habitual sleep quality was quantified from seven nights of wrist actigraphy. Partial correlations, adjusted for child energy needs, pre-meal hunger, food liking, and socioeconomic status, evaluated associations of sleep with meal intake and EAH. Additionally, sleep-by-obesity risk interactions were assessed. RESULTS: Greater sleep fragmentation was associated with higher homeostatic meal energy intake, but only among children at high familial obesity risk (p value for interaction = 0.001; ß high risk = 48.6, p = 0.001). Sleep fragmentation was not associated with total EAH but was related to higher and lower intake of carbohydrates (r = 0.33, p = 0.003) and fat (r = -0.33, p = 0.003), respectively. CONCLUSIONS: Adverse associations of poor sleep with energy intake may be amplified among children already predisposed to obesity. Furthermore, that fragmented sleep relates to preferential intake of carbohydrates over fat during EAH may suggest alterations in taste preferences with poor sleep.


Assuntos
Predisposição Genética para Doença , Qualidade do Sono , Humanos , Criança , Comportamento Alimentar , Obesidade/genética , Ingestão de Energia , Fome , Ingestão de Alimentos
10.
Drug Metab Dispos ; 40(6): 1067-75, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22393119

RESUMO

The United States Public Health Service Administration is alerting medical professionals that a substantial percentage of cocaine imported into the United States is adulterated with levamisole, a veterinary pharmaceutical that can cause blood cell disorders such as severe neutropenia and agranulocytosis. Levamisole was previously approved in combination with fluorouracil for the treatment of colon cancer; however, the drug was withdrawn from the U.S. market in 2000 because of the frequent occurrence of agranulocytosis. The detection of autoantibodies such as antithrombin (lupus anticoagulant) and an increased risk of agranulocytosis in patients carrying the human leukocyte antigen B27 genotype suggest that toxicity is immune-mediated. In this perspective, we provide an historical account of the levamisole/cocaine story as it first surfaced in 2008, including a succinct review of levamisole pharmacology, pharmacokinetics, and preclinical/clinical evidence for levamisole-induced agranulocytosis. Based on the available information on levamisole metabolism in humans, we propose that reactive metabolite formation is the rate-limiting step in the etiology of agranulocytosis associated with levamisole, in a manner similar to other drugs (e.g., propylthiouracil, methimazole, captopril, etc.) associated with blood dyscrasias. Finally, considering the toxicity associated with levamisole, we propose that the 2,3,5,6-tetrahydroimidazo[2,1-b]thiazole scaffold found in levamisole be categorized as a new structural alert, which is to be avoided in drug design.


Assuntos
Agranulocitose/induzido quimicamente , Agranulocitose/imunologia , Agranulocitose/metabolismo , Cocaína/metabolismo , Contaminação de Medicamentos , Levamisol/metabolismo , Animais , Cocaína/química , Cocaína/intoxicação , Humanos , Levamisol/química , Levamisol/intoxicação , Estados Unidos , United States Public Health Service/legislação & jurisprudência , Drogas Veterinárias/química , Drogas Veterinárias/metabolismo , Drogas Veterinárias/intoxicação
11.
Drug Metab Dispos ; 40(5): 1051-65, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22357286

RESUMO

The measurement of the effect of new chemical entities on human UDP-glucuronosyltransferase (UGT) marker activities using in vitro experimentation represents an important experimental approach in drug development to guide clinical drug-interaction study designs or support claims that no in vivo interaction will occur. Selective high-performance liquid chromatography-tandem mass spectrometry functional assays of authentic glucuronides for five major hepatic UGT probe substrates were developed: ß-estradiol-3-glucuronide (UGT1A1), trifluoperazine-N-glucuronide (UGT1A4), 5-hydroxytryptophol-O-glucuronide (UGT1A6), propofol-O-glucuronide (UGT1A9), and zidovudine-5'-glucuronide (UGT2B7). High analytical sensitivity permitted characterization of enzyme kinetic parameters at low human liver microsomal and recombinant UGT protein concentration (0.025 mg/ml), which led to a new recommended optimal universal alamethicin activation concentration of 10 µg/ml for microsomes. Alamethicin was not required for recombinant UGT incubations. Apparent enzyme kinetic parameters, particularly for UGT1A1 and UGT1A4, were affected by nonspecific binding. Unbound intrinsic clearance for UGT1A9 and UGT2B7 increased significantly after addition of 2% bovine serum albumin, with minimal changes for UGT1A1, UGT1A4, and UGT1A6. Eleven potential UGT and cytochrome P450 inhibitors were evaluated as UGT inhibitors, resulting in observation of nonselective UGT inhibition by chrysin, mefenamic acid, silibinin, tangeretin, ketoconazole, itraconazole, ritonavir, and verapamil. The pan-cytochrome P450 inhibitor, 1-aminobenzotriazole, minimally inhibited UGT activities and may be useful in reaction phenotyping of mixed UGT and cytochrome P450 substrates. These methods should prove useful in the routine assessments of the potential for new drug candidates to elicit pharmacokinetic drug interactions via inhibition of human UGT activities and the identification of UGT enzyme-selective chemical inhibitors.


Assuntos
Alameticina/química , Descoberta de Drogas/métodos , Inibidores Enzimáticos/farmacologia , Glucuronídeos/metabolismo , Glucuronosiltransferase/antagonistas & inibidores , Glucuronosiltransferase/metabolismo , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/metabolismo , Glucuronosiltransferase/genética , Humanos , Técnicas In Vitro , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Ligação Proteica , Soroalbumina Bovina/farmacologia , Especificidade por Substrato , Espectrometria de Massas em Tandem
12.
J Med Chem ; 65(22): 15000-15013, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36322383

RESUMO

Discovery efforts leading to the identification of ervogastat (PF-06865571), a systemically acting diacylglycerol acyltransferase (DGAT2) inhibitor that has advanced into clinical trials for the treatment of non-alcoholic steatohepatitis (NASH) with liver fibrosis, are described herein. Ervogastat is a first-in-class DGAT2 inhibitor that addressed potential development risks of the prototype liver-targeted DGAT2 inhibitor PF-06427878. Key design elements that culminated in the discovery of ervogastat are (1) replacement of the metabolically labile motif with a 3,5-disubstituted pyridine system, which addressed potential safety risks arising from a cytochrome P450-mediated O-dearylation of PF-06427878 to a reactive quinone metabolite precursor, and (2) modifications of the amide group to a 3-THF group, guided by metabolite identification studies coupled with property-based drug design.


Assuntos
Diacilglicerol O-Aciltransferase , Hepatopatia Gordurosa não Alcoólica , Humanos , Desenho de Fármacos , Cirrose Hepática , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico
13.
Chem Res Toxicol ; 24(9): 1345-410, 2011 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-21702456

RESUMO

Because of a preconceived notion that eliminating reactive metabolite (RM) formation with new drug candidates could mitigate the risk of idiosyncratic drug toxicity, the potential for RM formation is routinely examined as part of lead optimization efforts in drug discovery. Likewise, avoidance of "structural alerts" is almost a norm in drug design. However, there is a growing concern that the perceived safety hazards associated with structural alerts and/or RM screening tools as standalone predictors of toxicity risks may be over exaggerated. In addition, the multifactorial nature of idiosyncratic toxicity is now well recognized based upon observations that mechanisms other than RM formation (e.g., mitochondrial toxicity and inhibition of bile salt export pump (BSEP)) also can account for certain target organ toxicities. Hence, fundamental questions arise such as: When is a molecule that contains a structural alert (RM positive or negative) a cause for concern? Could the molecule in its parent form exert toxicity? Can a low dose drug candidate truly mitigate metabolism-dependent and -independent idiosyncratic toxicity risks? In an effort to address these questions, we have retrospectively examined 68 drugs (recalled or associated with a black box warning due to idiosyncratic toxicity) and the top 200 drugs (prescription and sales) in the United States in 2009 for trends in physiochemical characteristics, daily doses, presence of structural alerts, evidence for RM formation as well as toxicity mechanism(s) potentially mediated by parent drugs. Collectively, our analysis revealed that a significant proportion (∼78-86%) of drugs associated with toxicity contained structural alerts and evidence indicating that RM formation as a causative factor for toxicity has been presented in 62-69% of these molecules. In several cases, mitochondrial toxicity and BSEP inhibition mediated by parent drugs were also noted as potential causative factors. Most drugs were administered at daily doses exceeding several hundred milligrams. There was no obvious link between idiosyncratic toxicity and physicochemical properties such as molecular weight, lipophilicity, etc. Approximately half of the top 200 drugs for 2009 (prescription and sales) also contained one or more alerts in their chemical architecture, and many were found to be RM-positive. Several instances of BSEP and mitochondrial liabilities were also noted with agents in the top 200 category. However, with relatively few exceptions, the vast majority of these drugs are rarely associated with idiosyncratic toxicity, despite years of patient use. The major differentiating factor appeared to be the daily dose; most of the drugs in the top 200 list are administered at low daily doses. In addition, competing detoxication pathways and/or alternate nonmetabolic clearance routes provided suitable justifications for the safety records of RM-positive drugs in the top 200 category. Thus, while RM elimination may be a useful and pragmatic starting point in mitigating idiosyncratic toxicity risks, our analysis suggests a need for a more integrated screening paradigm for chemical hazard identification in drug discovery. Thus, in addition to a detailed assessment of RM formation potential (in relationship to the overall elimination mechanisms of the compound(s)) for lead compounds, effects on cellular health (e.g., cytotoxicity assays), BSEP inhibition, and mitochondrial toxicity are the recommended suite of assays to characterize compound liabilities. However, the prospective use of such data in compound selection will require further validation of the cellular assays using marketed agents. Until we gain a better understanding of the pathophysiological mechanisms associated with idiosyncratic toxicities, improving pharmacokinetics and intrinsic potency as means of decreasing the dose size and the associated "body burden" of the parent drug and its metabolites will remain an overarching goal in drug discovery.


Assuntos
Descoberta de Drogas/métodos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/metabolismo , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Animais , Recall de Medicamento , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Humanos , Estados Unidos/epidemiologia
14.
Chem Res Toxicol ; 23(6): 1115-26, 2010 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-20507089

RESUMO

The synthesis and structure-activity relationship studies on 5-trifluoromethylpyrido[4,3-d]pyrimidin-4(3H)-ones as antagonists of the human calcium receptor (CaSR) have been recently disclosed [ Didiuk et al. ( 2009 ) Bioorg. Med. Chem. Lett. 19 , 4555 - 4559 ). On the basis of its pharmacology and disposition attributes, (R)-2-(2-hydroxyphenyl)-3-(1-phenylpropan-2-yl)-5-(trifluoromethyl)pyrido[4,3-d]pyrimidin-4(3H)-one (1) was considered for rapid advancement to first-in-human (FIH) trials to mitigate uncertainty surrounding the pharmacokinetic/pharmacodynamic (PK/PD) predictions for a short-acting bone anabolic agent. During the course of metabolic profiling, however, glutathione (GSH) conjugates of 1 were detected in human liver microsomes in an NADPH-dependent fashion. Characterization of the GSH conjugate structures allowed insight(s) into the bioactivation pathway, which involved CYP3A4-mediated phenol ring oxidation to the catechol, followed by further oxidation to the electrophilic ortho-quinone species. While the reactive metabolite (RM) liability raised concerns around the likelihood of a potential toxicological outcome, a more immediate program goal was establishing confidence in human PK predictions in the FIH study. Furthermore, the availability of a clinical biomarker (serum parathyroid hormone) meant that PD could be assessed side by side with PK, an ideal scenario for a relatively unprecedented pharmacologic target. Consequently, progressing 1 into the clinic was given a high priority, provided the compound demonstrated an adequate safety profile to support FIH studies. Despite forming identical RMs in rat liver microsomes, no clinical or histopathological signs prototypical of target organ toxicity were observed with 1 in in vivo safety assessments in rats. Compound 1 was also devoid of metabolism-based mutagenicity in in vitro (e.g., Salmonella Ames) and in vivo assessments (micronuclei induction in bone marrow) in rats. Likewise, metabolism-based studies (e.g., evaluation of detoxicating routes of clearance and exhaustive PK/PD studies in animals to prospectively predict the likelihood of a low human efficacious dose) were also conducted, which mitigated the risks of idiosyncratic toxicity to a large degree. In parallel, medicinal chemistry efforts were initiated to identify additional compounds with a complementary range of human PK predictions, which would maximize the likelihood of achieving the desired PD effect in the clinic. The back-up strategy also incorporated an overarching goal of reducing/eliminating reactive metabolite formation observed with 1. Herein, the collective findings from our discovery efforts in the CaSR program, which include the incorporation of appropriate derisking steps when dealing with RM issues are summarized.


Assuntos
Anabolizantes/química , Anabolizantes/metabolismo , Osteoporose/tratamento farmacológico , Piridinas/química , Piridinas/metabolismo , Pirimidinonas/química , Pirimidinonas/metabolismo , Receptores de Detecção de Cálcio/antagonistas & inibidores , Anabolizantes/efeitos adversos , Animais , Cristalografia por Raios X , Humanos , Piridinas/efeitos adversos , Pirimidinonas/efeitos adversos , Ratos
15.
Drug Metab Dispos ; 37(5): 999-1008, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19196840

RESUMO

Prediction of the metabolic sites for new compounds, synthesized or virtual, is important in the rational design of compounds with increased resistance to metabolism. The aim of the present investigation was to use rational design together with MetaSite, an in silico tool for predicting metabolic soft spots, to synthesize compounds that retain their pharmacological effects but are metabolically more stable in the presence of cytochrome P450 (P450) enzymes. The model compound for these studies was the phenethyl amide (1) derivative of the nonsteroidal anti-inflammatory drug (NSAID) indomethacin. Unlike the parent NSAID, 1 is a potent and selective cyclooxygenase-2 (COX-2) inhibitor and nonulcerogenic anti-inflammatory agent in the rat. This pharmacological benefit is offset by the finding that 1 is very unstable in rat and human microsomes because of extensive P4503 A4/2D6-mediated metabolism on the phenethyl group, experimental observations that were accurately predicted by MetaSite. The information was used to design analogs with polar (glycinyl) and/or electron-deficient (fluorophenyl, fluoropyridinyl) amide substituents to reduce metabolism in 1. MetaSite correctly predicted the metabolic shift from oxidation on the amide substituent to O-demethylation for these compounds, whereas rat and human microsomal stability studies and pharmacokinetic assessments in the rat confirmed that the design tactics for improving pharmacokinetic attributes of 1 had worked in our favor. In addition, the fluorophenyl and pyridinyl amide derivatives retained the potent and selective COX-2 inhibition demonstrated with 1. Overall, the predictions from MetaSite gave useful information leading to the design of new compounds with improved metabolic properties.


Assuntos
Inibidores de Ciclo-Oxigenase 2/farmacocinética , Indometacina/análogos & derivados , Animais , Anti-Inflamatórios não Esteroides/farmacocinética , Área Sob a Curva , Biotransformação , Simulação por Computador , Sistema Enzimático do Citocromo P-450/metabolismo , Técnicas In Vitro , Indometacina/farmacocinética , Masculino , Espectrometria de Massas , Microssomos Hepáticos/enzimologia , Microssomos Hepáticos/metabolismo , Ratos , Ratos Sprague-Dawley , Espectrofotometria Ultravioleta
16.
Bioorg Med Chem Lett ; 19(6): 1559-63, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19246199

RESUMO

The biochemical basis for S9-dependent mutagenic response of the 5-HT(2C) receptor agonist and diazinylpiperazine derivative 1 in the Salmonella Ames assay involves P450-mediated bioactivation to DNA-reactive quinone-methide, aldehyde and nitrone intermediates. Mechanistic information pertaining to the metabolism of 1 was used in the design of diazinylpiperazine 5 to eliminate the safety liability. While 5 was negative in the Ames assay, the compound retained the ability of 1 to form certain electrophilic intermediates. Plausible hypotheses that can collectively account for the differences in mutagenic response of the two piperazine analogs are discussed.


Assuntos
Química Farmacêutica/métodos , Piperazinas/química , Agonistas do Receptor 5-HT2 de Serotonina , Amidas/química , Cromatografia/métodos , Desenho de Fármacos , Modelos Químicos , Mutagênese , Testes de Mutagenicidade , Mutagênicos , Mutação , NADP/química , Piperazina , Reprodutibilidade dos Testes , Salmonella/metabolismo
17.
Bioorg Med Chem Lett ; 19(12): 3177-82, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19433356

RESUMO

Previous studies have demonstrated the CYP3A4 mediated oxidation of the 5-aminooxindole motif, present in the trifluoromethylpyrimidine class of PYK-2 inhibitors, to a reactive bis-imine species, which can be trapped with glutathione (GSH) in human liver microsomal incubations. The corresponding 5-aminobenzsultam derivatives, which should possess a similar oxidative liability, do not form GSH conjugates in microsomal incubations. In the current study, we conducted a retrospective analysis on representative 5-aminooxindole and 5-aminobenzsultam PYK-2 inhibitors utilizing CYP3A4 molecular docking and quantum chemical calculations to rationalize the bioactivation differences. Our analysis revealed key differences in (a) active site binding and (b) two-electron oxidation rates, which correlate with GSH adduct formation with the two moieties. The value of linear ion/orbitrap mass spectrometry to detect GSH conjugates with greater sensitivity, compared with conventional triple quadrupole mass spectrometry approaches, was also demonstrated in the course of these studies.


Assuntos
Derivados de Benzeno/farmacologia , Citocromo P-450 CYP3A/metabolismo , Quinase 2 de Adesão Focal/antagonistas & inibidores , Glutationa/metabolismo , Indóis/farmacologia , Aminas/farmacologia , Catálise , Simulação por Computador , Humanos , Espectrometria de Massas , Microssomos , Modelos Moleculares , Oxirredução , Oxindóis , Ligação Proteica , Inibidores de Proteínas Quinases
19.
Drug Metab Dispos ; 36(6): 1016-29, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18332080

RESUMO

In vitro metabolism/bioactivation of structurally related central nervous system agents nefazodone (hepatotoxin) and aripiprazole (nonhepatotoxin) were undertaken in human liver microsomes in an attempt to understand the differences in toxicological profile. NADPH-supplemented microsomal incubations of nefazodone and glutathione generated conjugates derived from addition of thiol to quinonoid intermediates. Inclusion of cyanide afforded cyano conjugates to iminium ions derived from alpha-carbon oxidation of the piperazine ring in nefazodone and downstream metabolites. Although the arylpiperazine motif in aripiprazole did not succumb to bioactivation, the dihydroquinolinone group was bioactivated via an intermediate monohydroxy metabolite to a reactive species, which was trapped by glutathione. Studies with synthetic dehydroaripiprazole metabolite revealed an analogous glutathione conjugate with molecular weight 2 Da lower. Based on the proposed structure of the glutathione conjugate(s), a bioactivation sequence involving aromatic ortho-or para-hydroxylation on the quinolinone followed by oxidation to a quinone-imine was proposed. P4503A4 inactivation studies in microsomes indicated that, unlike nefazodone, aripiprazole was not a time- and concentration-dependent inactivator of the enzyme. Overall, these studies reinforce the notion that not all drugs that are bioactivated in vitro elicit a toxicological response in vivo. A likely explanation for the markedly improved safety profile of aripiprazole (versus nefazodone) despite the accompanying bioactivation liability is the vastly improved pharmacokinetics (enhanced oral bioavailability, longer elimination half-life) due to reduced P4503A4-mediated metabolism/bioactivation, which result in a lower daily dose (5-20 mg/day) compared with nefazodone (200-400 mg/day). This attribute probably reduces the total body burden to reactive metabolite exposure and may not exceed a threshold needed for toxicity.


Assuntos
Antidepressivos de Segunda Geração/metabolismo , Antipsicóticos/metabolismo , Piperazinas/metabolismo , Quinolonas/metabolismo , Triazóis/metabolismo , Aripiprazol , Cianetos/metabolismo , Citocromo P-450 CYP2D6/metabolismo , Inibidores do Citocromo P-450 CYP2D6 , Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A , Glutationa/metabolismo , Humanos , Microssomos Hepáticos/metabolismo
20.
Bioorg Med Chem Lett ; 18(23): 6071-7, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-18951788

RESUMO

The synthesis and SAR for a series of diaminopyrimidines as PYK2 inhibitors are described. Using a combination of library and traditional medicinal chemistry techniques, a FAK-selective chemical series was transformed into compounds possessing good PYK2 potency and 10- to 20-fold selectivity against FAK. Subsequent studies found that the majority of the compounds were positive in a reactive metabolite assay, an indicator for potential toxicological liabilities. Based on the proposed mechanism for bioactivation, as well as a combination of structure-based drug design and traditional medicinal chemistry techniques, a follow-up series of PYK2 inhibitors was identified that maintained PYK2 potency, FAK selectivity and HLM stability, yet were negative in the RM assay.


Assuntos
Quinase 2 de Adesão Focal/antagonistas & inibidores , Pirimidinas/síntese química , Pirimidinas/farmacologia , Animais , Técnicas de Química Combinatória , Cristalografia por Raios X , Modelos Animais de Doenças , Desenho de Fármacos , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Humanos , Conformação Molecular , Estrutura Molecular , Osteoporose/tratamento farmacológico , Pirimidinas/química , Ratos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA