Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 328: 116965, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36493543

RESUMO

The maintenance of connectivity is critical to the proper functioning of an ecosystem. The present study was conducted with the aim of comparing graph theory connectivity indices and landscape connectivity metrics for the purpose of modeling river water quality. To conduct this study, a forest layer was extracted from land cover map and 25 large watersheds were selected. River water quality was then assessed from the perspective of 8 landscape connectivity metrics and 12 graph theory indices. We developed predictive models using stepwise linear regression, power, exponential, and logarithmic models to locate the best model form for each water quality parameter (dependent variable) we examined. The results indicated that models developed using graph theory connectivity indices resulted in higher coefficients of determination (R2) than models developed using landscape metrics. Only 5 independent variables from a potential set of 13 were significant in explaining the variation in water quality parameters. Also, the models with the highest R2 attempted to explain variations in CO3 (0.818), water discharge (0.733), and Ca levels (0.702). Therefore, the results of this study showed that graph theory connectivity indices had more significant correlation with water quality parameters compared to landscape connectivity metrics. This work also indicates that there exist nonlinear relationships among connectivity indices and water quality parameters.


Assuntos
Ecossistema , Qualidade da Água , Rios , Mar Cáspio , Benchmarking , Monitoramento Ambiental/métodos , China
2.
Sensors (Basel) ; 22(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35009782

RESUMO

Curved beam bridges, whose line type is flexible and beautiful, are an indispensable bridge type in modern traffic engineering. Nevertheless, compared with linear bridges, curved beam bridges have more complex internal forces and deformation due to the curvature; therefore, this type of bridge is more likely to suffer damage in strong earthquakes. The occurrence of damage reduces the safety of bridges, and can even cause casualties and property loss. For this reason, it is of great significance to study the identification of seismic damage in curved beam bridges. However, there is currently little research on curved beam bridges. For this reason, this paper proposes a damage identification method based on wavelet packet norm entropy (WPNE) under seismic excitation. In this method, wavelet packet transform is adopted to highlight the damage singularity information, the Lp norm entropy of wavelet coefficient is taken as a damage characteristic factor, and then the occurrence of damage is characterized by changes in the damage index. To verify the feasibility and effectiveness of this method, a finite element model of Curved Continuous Rigid-Frame Bridges (CCRFB) is established for the purposes of numerical simulation. The results show that the damage index based on WPNE can accurately identify the damage location and characterize the severity of damage; moreover, WPNE is more capable of performing damage location and providing early warning than the method based on wavelet packet energy. In addition, noise resistance analysis shows that WPNE is immune to noise interference to a certain extent. As long as a series of frequency bands with larger correlation coefficients are selected for WPNE calculation, independent noise reduction can be achieved.

3.
Neural Comput Appl ; 30(2): 389-411, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29950788

RESUMO

Structural damage identification based on finite element (FE) model updating has been a research direction of increasing interest over the last decade in the mechanical, civil, aerospace, etc., engineering fields. Various studies have addressed direct, sensitivity-based, probabilistic, statistical, and iterative methods for updating FE models for structural damage identification. In contrast, evolutionary algorithms (EAs) are a type of modern method for FE model updating. Structural damage identification using FE model updating by evolutionary algorithms is an active research focus in progress but lacking a comprehensive survey. In this situation, this study aims to present a review of critical aspects of structural damage identification using evolutionary algorithm-based FE model updating. First, a theoretical background including the structural damage detection problem and the various types of FE model updating approaches is illustrated. Second, the various residuals between dynamic characteristics from FE model and the corresponding physical model, used for constructing the objective function for tracking damage, are summarized. Third, concerns regarding the selection of parameters for FE model updating are investigated. Fourth, the use of evolutionary algorithms to update FE models for damage detection is examined. Fifth, a case study comparing the applications of two single-objective EAs and one multi-objective EA for FE model updating-based damage detection is presented. Finally, possible research directions for utilizing evolutionary algorithm-based FE model updating to solve damage detection problems are recommended. This study should help researchers find crucial points for further exploring theories, methods, and technologies of evolutionary algorithm-based FE model updating for structural damage detection.

4.
PLoS One ; 10(4): e0121172, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25849029

RESUMO

Mapping landscape variation in tree species richness (SR) is essential to the long term management and conservation of forest ecosystems. The current study examines the prospect of mapping field assessments of SR in a high-elevation, deciduous forest in northern Iran as a function of 16 biophysical variables representative of the area's unique physiography, including topography and coastal placement, biophysical environment, and forests. Basic to this study is the development of moderate-resolution biophysical surfaces and associated plot-estimates for 202 permanent sampling plots. The biophysical variables include: (i) three topographic variables generated directly from the area's digital terrain model; (ii) four ecophysiologically-relevant variables derived from process models or from first principles; and (iii) seven variables of Landsat-8-acquired surface reflectance and two, of surface radiance. With symbolic regression, it was shown that only four of the 16 variables were needed to explain 85% of observed plot-level variation in SR (i.e., wind velocity, surface reflectance of blue light, and topographic wetness indices representative of soil water content), yielding mean-absolute and root-mean-squared error of 0.50 and 0.78, respectively. Overall, localised calculations of wind velocity and surface reflectance of blue light explained about 63% of observed variation in SR, with wind velocity accounting for 51% of that variation. The remaining 22% was explained by linear combinations of soil-water-related topographic indices and associated thresholds. In general, SR and diversity tended to be greatest for plots dominated by Carpinus betulus (involving ≥ 33% of all trees in a plot), than by Fagus orientalis (median difference of one species). This study provides a significant step towards describing landscape variation in SR as a function of modelled and satellite-based information and symbolic regression. Methods in this study are sufficiently general to be applicable to the characterisation of SR in other forested regions of the world, providing plot-scale data are available for model generation.


Assuntos
Biodiversidade , Florestas , Modelos Biológicos , Irã (Geográfico)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA