RESUMO
There are limited fiber-based single-mode laser sources over the visible and near infrared range. Nonlinear conversion through four-wave mixing in photonic crystal fibers allows for the generation of new wavelengths far from a pump wavelength. Utilizing an all-fiber spliced configuration, we convert 1064 nm light into a W-level signal in the 750 nm - 820 nm spectral region. We demonstrate over 7.9 watts in the signal band, out of a custom photonic crystal fiber with M2 < 1.15. The input peak power as well as fiber length can be selected to keep the converted power in a 0.6 nm narrow emission band or broaden the output to 45 nm spectral band with spectral density greater than 50 mW/nm by pumping with higher peak powers.
RESUMO
Negative curvature fibers have been gaining attention as fibers for high power infrared light. Currently, these fibers have been made of silica glass and infrared glasses solely through stack and draw. Infrared glasses' lower softening point presents the opportunity to perform low-temperature processing methods such as direct extrusion of pre-forms. We demonstrate an infrared-glass based negative curvature fiber fabricated through extrusion. The fiber shows record low losses in 9.75 - 10.5 µm range (which overlaps with the CO2 emission bands). We show the fiber's lowest order mode and measure the numerical aperture in the longwave infrared transmission band. The possibility to directly extrude a negative curvature fiber with no penalties in losses is a strong motivation to think beyond the limitations of stack-and-draw to novel shapes for negative curvature fibers.
RESUMO
Femtosecond Z-scan measurements have been performed on six window materials at 772, 1030, and 1550 nm. Measurements of the nonlinear refractive index are presented for reference materials, fused silica and BK7 and four near-infrared window materials, multispectral ZnS (CLEARTRAN), aluminum oxynitride (AlON), spinel (MgAl2O4) ceramic, and barium gallogermanate (BGG) glass.
RESUMO
A modified Barium Gallo-Germanate glass has been developed as an exit window for high energy lasers operating in the mid-infrared wavelength region. All the physical properties, for application as a window for high energy laser systems have been measured. Absorption loss and thermo-optic coefficient were identified as key in developing the Barium Gallo-Germanate glass for high energy laser applications. A purification method was developed to reduce the absorption loss of the glass from 6x10(-2) cm(-1) to 2x10(-3) cm(-1) at 3.8 mum. Manufacturability in large size windows has been demonstrated with the fabrication of an 18" diameter prototype window. Modified Barium Gallo-Germanate glasses have also been developed with lower thermo-optic coefficient resulting in lower optical path distortion.
RESUMO
Barium gallogermanate (BGG) glasses are currently being explored as a viable low cost material for numerous U.S. defense and commercial visible-infrared window applications. These glasses are transparent from 0.4 mum to beyond 5.0 mum and can be easily made in large optics and complex shapes with high index homogeneity. For high-energy laser (HEL) applications, knowledge of the thermo-optic coefficient (dn/dT) of the window material is important in determining the optical path distortion. The dn/dT measurements were made on BGG glass at 633 and 3390 nm and compared with the values for multispectral ZnS. The dn/dT for BGG glass was approximately 1/5 the value for multispectral ZnS, giving BGG glass a clear advantage for HEL applications.
RESUMO
Gallogermanate glasses are the subject of intense study as a result of their unique combination of physical and optical properties, including transmission from 0.4 to beyond 5.0 microm. These glasses can be easily made into large optics with high-index homogeneity for numerous U.S. Department of Defense and commercial visible-IR window applications such as reconnaissance, missile domes, IR countermeasures, avionics, and collision avoidance on automobiles. These applications require a knowledge of the refractive index of glass throughout the region of transmission. Consequently, we have measured the refractive index of BaO-Ga2O3-GeO2 glass from 0.4 to 5.0 microm and calculated the Sellmeier coefficients required for optical device design.