Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36986568

RESUMO

This study aimed to develop a hydroxyethyl cellulose-based topical formulation containing probiotics and to evaluate its antimicrobial action using in vivo and ex vivo models. Initially, the antagonistic effects of Lacticaseibacillus rhamnosus ATCC 10863, Limosilactobacillus fermentum ATCC 23271, Lactiplantibacillus plantarum ATCC 8014 and Lactiplantibacillus plantarum LP-G18-A11 were analyzed against Enterococcus faecalis ATCC 29212, Klebsiella pneumoniae ATCC 700603, Staphylococcus aureus ATCC 27853 and Pseudomonas aeruginosa ATCC 2785. The best action was seen for L. plantarum LP-G18-A11, which presented high inhibition against S. aureus and P. aeruginosa. Then, lactobacilli strains were incorporated into hydroxyethyl cellulose-based gels (natrosol); however, only the LP-G18-A11-incorporated gels (5% and 3%) showed antimicrobial effects. The LP-G18-A11 gel (5%) maintained its antimicrobial effects and viability up to 14 and 90 days at 25 °C and 4 °C, respectively. In the ex vivo assay using porcine skin, the LP-G18-A11 gel (5%) significantly reduced the skin loads of S. aureus and P. aeruginosa after 24 h, while only P. aeruginosa was reduced after 72 h. Moreover, the LP-G18-A11 gel (5%) showed stability in the preliminary and accelerated assays. Taken together, the results show the antimicrobial potential of L. plantarum LP-G18-A11, which may be applied in the development of new dressings for the treatment of infected wounds.

2.
J Funct Biomater ; 13(3)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36135584

RESUMO

Dental caries is a multifactorial, biofilm-dependent infectious disease that develops when detrimental changes occur in the oral cavity microenvironment. The antimicrobial and antivirulence properties of the essential oil obtained from the leaves of Eugenia brejoensis Mazine (EBEO) have been reported against Gram-positive and Gram-negative bacteria. Herein, the antimicrobial action of EBEO towards Streptococcus mutans is reported, along with the development and characterization of dental adhesives doped with. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of EBEO were determined against S. mutans, while its toxicity was analyze using Tenebrio molitor larvae. EBEO (MIC and 10×MIC) was incorporated into the Ambar Advanced Polymerization System® (Ambar APS), a two-step total-etch adhesive system (FGM Dental Group), and the antibiofilm action was evaluated. The reflective strength, modulus of elasticity, degree of conversion, and maximum rate of polymerization of each adhesive were also determined. The MIC and MBC values of EBEO against S. mutans were 62.5 µg/mL. The tested concentrations of EBEO were non-toxic to T. molitor larvae. The formation of S. mutans biofilms was significantly inhibited by EBEO and EBEO-coated resin discs (p < 0.05). Importantly, EBEO incorporation did not affect the mechanical and physicochemical properties in relation to oil-free adhesive version. EBEO showed strong antibacterial and antibiofilm activity against S. mutans, no toxicity effect against T. molitor larvae, and did not jeopardize the physical-chemical properties tested.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA