RESUMO
2'-deoxy-ATP (dATP) improves cardiac function by increasing the rate of crossbridge cycling and Ca[Formula: see text] transient decay. However, the mechanisms of these effects and how therapeutic responses to dATP are achieved when dATP is only a small fraction of the total ATP pool remain poorly understood. Here, we used a multiscale computational modeling approach to analyze the mechanisms by which dATP improves ventricular function. We integrated atomistic simulations of prepowerstroke myosin and actomyosin association, filament-scale Markov state modeling of sarcomere mechanics, cell-scale analysis of myocyte Ca[Formula: see text] dynamics and contraction, organ-scale modeling of biventricular mechanoenergetics, and systems level modeling of circulatory dynamics. Molecular and Brownian dynamics simulations showed that dATP increases the actomyosin association rate by 1.9 fold. Markov state models predicted that dATP increases the pool of myosin heads available for crossbridge cycling, increasing steady-state force development at low dATP fractions by 1.3 fold due to mechanosensing and nearest-neighbor cooperativity. This was found to be the dominant mechanism by which small amounts of dATP can improve contractile function at myofilament to organ scales. Together with faster myocyte Ca[Formula: see text] handling, this led to improved ventricular contractility, especially in a failing heart model in which dATP increased ejection fraction by 16% and the energy efficiency of cardiac contraction by 1%. This work represents a complete multiscale model analysis of a small molecule myosin modulator from single molecule to organ system biophysics and elucidates how the molecular mechanisms of dATP may improve cardiovascular function in heart failure with reduced ejection fraction.
Assuntos
Nucleotídeos de Desoxiadenina , Insuficiência Cardíaca , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Nucleotídeos de Desoxiadenina/metabolismo , Animais , Humanos , Função Ventricular , Modelos Cardiovasculares , Contração Miocárdica/efeitos dos fármacos , Miosinas/metabolismo , Sarcômeros/metabolismo , Actomiosina/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Cálcio/metabolismo , Cadeias de MarkovRESUMO
While exercise-mediated vasoregulation in the myocardium is understood to be governed by autonomic, myogenic, and metabolic-mediated mechanisms, we do not yet understand the spatial heterogeneity of vasodilation or its effects on microvascular flow patterns and oxygen delivery. This study uses a simulation and modeling approach to explore the mechanisms underlying the recruitment of myocardial perfusion and oxygen delivery in exercise. The simulation approach integrates model components representing: whole-body cardiovascular hemodynamics, cardiac mechanics and myocardial work; myocardial perfusion; and myocardial oxygen transport. Integrating these systems together, model simulations reveal: (1.) To match expected flow and transmural flow ratios at increasing levels of exercise, a greater degree of vasodilation must occur in the subendocardium compared to the subepicardium. (2.) Oxygen extraction and venous oxygenation are predicted to substantially decrease with increasing exercise level preferentially in the subendocardium, suggesting that an oxygen-dependent error signal driving metabolic mediated recruitment of flow would be operative only in the subendocardium. (3.) Under baseline physiological conditions approximately 4% of the oxygen delivered to the subendocardium may be supplied via retrograde flow from coronary veins.
Assuntos
Simulação por Computador , Circulação Coronária , Exercício Físico , Modelos Cardiovasculares , Miocárdio , Oxigênio , Exercício Físico/fisiologia , Humanos , Oxigênio/metabolismo , Miocárdio/metabolismo , Hemodinâmica , Consumo de Oxigênio , Coração/fisiologia , VasodilataçãoRESUMO
The coronary circulation has the inherent ability to maintain myocardial perfusion constant over a wide range of perfusion pressures. The phenomenon of pressure-flow autoregulation is crucial in response to flow-limiting atherosclerotic lesions which diminish coronary driving pressure and increase risk of myocardial ischemia and infarction. Despite well over half a century of devoted research, understanding of the mechanisms responsible for autoregulation remains one of the most fundamental and contested questions in the field today. The purpose of this review is to highlight current knowledge regarding the complex interrelationship between the pathways and mechanisms proposed to dictate the degree of coronary pressure-flow autoregulation. Our group recently likened the intertwined nature of the essential determinants of coronary flow control to the symbolically unsolvable "Gordian knot". To further efforts to unravel the autoregulatory "knot", we consider recent challenges to the local metabolic and myogenic hypotheses and the complicated dynamic structural and functional heterogeneity unique to the heart and coronary circulation. Additional consideration is given to interrogation of putative mediators, role of K+ and Ca2+ channels, and recent insights from computational modeling studies. Improved understanding of how specific vasoactive mediators, pathways, and underlying disease states influence coronary pressure-flow relations stands to significantly reduce morbidity and mortality for what remains the leading cause of death worldwide.
Assuntos
Circulação Coronária , Homeostase , Humanos , Circulação Coronária/fisiologia , Animais , Pressão Sanguínea/fisiologia , Vasos Coronários/fisiopatologia , HemodinâmicaRESUMO
Computational, or in silico, models are an effective, noninvasive tool for investigating cardiovascular function. These models can be used in the analysis of experimental and clinical data to identify possible mechanisms of (ab)normal cardiovascular physiology. Recent advances in computing power and data management have led to innovative and complex modeling frameworks that simulate cardiovascular function across multiple scales. While commonly used in multiple disciplines, there is a lack of concise guidelines for the implementation of computer models in cardiovascular research. In line with recent calls for more reproducible research, it is imperative that scientists adhere to credible practices when developing and applying computational models to their research. The goal of this manuscript is to provide a consensus document that identifies best practices for in silico computational modeling in cardiovascular research. These guidelines provide the necessary methods for mechanistic model development, model analysis, and formal model calibration using fundamentals from statistics. We outline rigorous practices for computational, mechanistic modeling in cardiovascular research and discuss its synergistic value to experimental and clinical data.
Assuntos
Simulação por Computador , Modelos Cardiovasculares , Humanos , Pesquisa Biomédica/normas , Animais , Fenômenos Fisiológicos Cardiovasculares , Doenças Cardiovasculares/fisiopatologia , ConsensoRESUMO
The coronary circulation has an innate ability to maintain constant blood flow over a wide range of perfusion pressures. However, the mechanisms responsible for coronary autoregulation remain a fundamental and highly contested question. This study interrogated the local metabolic hypothesis of autoregulation by testing the hypothesis that hypoxemia-induced exaggeration of the metabolic error signal improves the autoregulatory response. Experiments were performed on open-chest anesthetized swine during stepwise changes in coronary perfusion pressure (CPP) from 140 to 40 mmHg under normoxic (n = 15) and hypoxemic (n = 8) conditions, in the absence and presence of dobutamine-induced increases in myocardial oxygen consumption (MVO2) (n = 5-7). Hypoxemia (PaO2 < 40 mmHg) decreased coronary venous PO2 (CvPO2) ~ 30% (P < 0.001) and increased coronary blood flow ~ 100% (P < 0.001), sufficient to maintain myocardial oxygen delivery (P = 0.14) over a wide range of CPPs. Autoregulatory responsiveness during hypoxemia-induced reductions in CvPO2 were associated with increases of autoregulatory gain (Gc; P = 0.033) but not slope (P = 0.585) over a CPP range of 120 to 60 mmHg. Preservation of autoregulatory Gc (P = 0.069) and slope (P = 0.264) was observed during dobutamine administration ± hypoxemia. Reductions in coronary resistance in response to decreases in CPP predominantly occurred below CvPO2 values of ~ 25 mmHg, irrespective of underlying vasomotor reserve. These findings support the presence of an autoregulatory threshold under which oxygen-sensing pathway(s) act to preserve sufficient myocardial oxygen delivery as CPP is reduced during increases in MVO2 and/or reductions in arterial oxygen content.
Assuntos
Dobutamina , Oxigênio , Suínos , Animais , Pressão Sanguínea , Dobutamina/farmacologia , Miocárdio/metabolismo , Circulação Coronária/fisiologia , Homeostase/fisiologia , Consumo de Oxigênio/fisiologia , Hipóxia , PerfusãoRESUMO
For patients with heart failure, myocardial ATP level can be reduced to one-half of that observed in healthy controls. This marked reduction (from ≈8 mM in healthy controls to as low as 3-4 mM in heart failure) has been suggested to contribute to impaired myocardial contraction and to the decreased pump function characteristic of heart failure. However, in vitro measures of maximum myofilament force generation, maximum shortening velocity, and the actomyosin ATPase activity show effective KM values for MgATP ranging from ≈10 µM to 150 µM, well below the intracellular ATP level in heart failure. Thus, it is not clear that the fall of myocardial ATP observed in heart failure is sufficient to impair the function of the contractile proteins. Therefore, we tested the effect of low MgATP levels on myocardial contraction using demembranated cardiac muscle preparations that were exposed to MgATP levels typical of the range found in non-failing and failing hearts. Consistent with previous studies, we found that a 50% reduction in MgATP level (from 8 mM to 4 mM) did not reduce maximum force generation or maximum velocity of shortening. However, we found that a 50% reduction in MgATP level caused a 20%-25% reduction in maximal power generation (measured during muscle shortening against a load) and a 20% slowing of cross-bridge cycling kinetics. These results suggest that the decreased cellular ATP level occurring in heart failure contributes to the impaired pump function of the failing heart. Since the ATP-myosin ATPase dissociation constant is estimated to be submillimolar, these findings also suggest that MgATP concentration affects cross-bridge dynamics through a mechanism that is more complex than through the direct dependence of MgATP concentration on myosin ATPase activity. Finally, these studies suggest that therapies targeted to increase adenine nucleotide pool levels in cardiomyocytes might be beneficial for treating heart failure.
Assuntos
Insuficiência Cardíaca , Miocárdio , Trifosfato de Adenosina/metabolismo , Coração , Humanos , Contração Muscular , Contração Miocárdica , Miocárdio/metabolismo , MiosinasRESUMO
Blood flows and pressures throughout the human cardiovascular system are regulated in response to various dynamic perturbations, such as changes to peripheral demands in exercise, rapid changes in posture, or loss of blood from hemorrhage, via the coordinated action of the heart, the vasculature, and autonomic reflexes. To assess how the systemic and pulmonary arterial and venous circulation, the heart, and the baroreflex work together to effect the whole-body responses to these perturbations, we integrated an anatomically-based large-vessel arterial tree model with the TriSeg heart model, models capturing nonlinear characteristics of the large and small veins, and baroreflex-mediated regulation of vascular tone and cardiac chronotropy and inotropy. The model was identified by matching data from the Valsalva maneuver (VM), exercise, and head-up tilt (HUT). Thirty-one parameters were optimized using a custom parameter-fitting tool chain, resulting in an unique, high-fidelity whole-body human cardiovascular systems model. Because the model captures the effects of exercise and posture changes, it can be used to simulate numerous clinical assessments, such as HUT, the VM, and cardiopulmonary exercise stress testing. The model can also be applied as a framework for representing and simulating individual patients and pathologies. Moreover, it can serve as a framework for integrating multi-scale organ-level models, such as for the heart or the kidneys, into a whole-body model. Here, the model is used to analyze the relative importance of chronotropic, inotropic, and peripheral vascular contributions to the whole-body cardiovascular response to exercise. It is predicted that in normal physiological conditions chronotropy and inotropy make roughly equal contributions to increasing cardiac output and cardiac power output during exercise. Under upright exercise conditions, the nonlinear pressure-volume relationship of the large veins and sympathetic-mediated venous vasoconstriction are both required to maintain preload to achieve physiological exercise levels. The developed modeling framework is built using the open Modelica modeling language and is freely distributed.
Assuntos
Barorreflexo , Sistema Cardiovascular , Exercício Físico , Barorreflexo/fisiologia , Pressão Sanguínea/fisiologia , Frequência Cardíaca/fisiologia , Humanos , Postura/fisiologia , Análise de SistemasRESUMO
Coronary blood flow is tightly regulated to ensure that myocardial oxygen delivery meets local metabolic demand via the concurrent action of myogenic, neural and metabolic mechanisms. Although several competing hypotheses exist, the specific nature of the local metabolic mechanism(s) remains poorly defined. To gain insights into the viability of putative metabolic feedback mechanisms and into the co-ordinated action of parallel regulatory mechanisms, we applied a multiscale modelling framework to analyse experimental data on coronary pressure, flow and myocardial oxygen delivery in the porcine heart in vivo. The modelling framework integrates a previously established lumped-parameter model of myocardial perfusion used to account for transmural haemodynamic variations and a simple vessel mechanics model used to simulate the vascular tone in each of three myocardial layers. Vascular tone in the resistance vessel mechanics model is governed by input stimuli from the myogenic, metabolic and autonomic control mechanisms. Seven competing formulations of the metabolic feedback mechanism are implemented in the modelling framework, and associated model simulations are compared with experimental data on coronary pressures and flows under a range of experimental conditions designed to interrogate the governing control mechanisms. Analysis identifies a maximally probable metabolic mechanism among the seven tested models, in which production of a metabolic signalling factor is proportional to myocardial oxygen consumption and delivery is proportional to flow. Finally, the identified model is validated based on comparisons of simulations with data on the myocardial perfusion response to conscious exercise that were not used for model identification. KEY POINTS: Although several competing hypotheses exist, we lack knowledge of specific nature of the metabolic mechanism(s) governing regional myocardial perfusion. Moreover, we lack an understanding of how parallel myogenic, adrenergic/autonomic and metabolic mechanisms work together to regulatory oxygen delivery in the beating heart. We have developed a multiscale modelling framework to test competing hypotheses against experimental data on coronary pressure, flow and myocardial oxygen delivery in the porcine heart in vivo. The analysis identifies a maximally probable metabolic mechanism among seven tested models, in which the production of a metabolic signalling factor is proportional to myocardial oxygen consumption and delivery is proportional to flow.
Assuntos
Circulação Coronária , Hemodinâmica , Animais , Circulação Coronária/fisiologia , Retroalimentação , Hemodinâmica/fisiologia , Miocárdio/metabolismo , Oxigênio/metabolismo , Consumo de Oxigênio/fisiologia , Perfusão , SuínosRESUMO
Rationale: Aging is one of the strongest risk factors for atherosclerosis. Yet whether aging increases the risk of atherosclerosis independently of chronic hyperlipidemia is not known. Objective: To determine if vascular aging before the induction of hyperlipidemia enhances atherogenesis. Methods and Results: We analyzed the aortas of young and aged normolipidemic wild type, disease-free mice and found that aging led to elevated IL (interleukin)-6 levels and mitochondrial dysfunction, associated with increased mitophagy and the associated protein Parkin. In aortic tissue culture, we found evidence that with aging mitochondrial dysfunction and IL-6 exist in a positive feedback loop. We triggered acute hyperlipidemia in aged and young mice by inducing liver-specific degradation of the LDL (low-density lipoprotein) receptor combined with a 10-week western diet and found that atherogenesis was enhanced in aged wild-type mice. Hyperlipidemia further reduced mitochondrial function and increased the levels of Parkin in the aortas of aged mice but not young mice. Genetic disruption of autophagy in smooth muscle cells of young mice exposed to hyperlipidemia led to increased aortic Parkin and IL-6 levels, impaired mitochondrial function, and enhanced atherogenesis. Importantly, enhancing mitophagy in aged, hyperlipidemic mice via oral administration of spermidine prevented the increase in aortic IL-6 and Parkin, attenuated mitochondrial dysfunction, and reduced atherogenesis. Conclusions: Before hyperlipidemia, aging elevates IL-6 and impairs mitochondrial function within the aorta, associated with enhanced mitophagy and increased Parkin levels. These age-associated changes prime the vasculature to exacerbate atherogenesis upon acute hyperlipidemia. Our work implies that novel therapeutics aimed at improving vascular mitochondrial bioenergetics or reducing inflammation before hyperlipidemia may reduce age-related atherosclerosis.
Assuntos
Envelhecimento/metabolismo , Aterosclerose/metabolismo , Endotélio Vascular/metabolismo , Lipoproteínas LDL/metabolismo , Mitocôndrias/metabolismo , Envelhecimento/patologia , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta/patologia , Aterosclerose/etiologia , Aterosclerose/prevenção & controle , Dieta Hiperlipídica/efeitos adversos , Endotélio Vascular/patologia , Retroalimentação Fisiológica , Feminino , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/patologia , Mitofagia , Receptores de LDL/metabolismo , Espermidina/farmacologia , Espermidina/uso terapêutico , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismoRESUMO
The relationship between regional variabilities in airflow (ventilation) and blood flow (perfusion) is a critical determinant of gas exchange efficiency in the lungs. Hypoxic pulmonary vasoconstriction is understood to be the primary active regulator of ventilation-perfusion matching, where upstream arterioles constrict to direct blood flow away from areas that have low oxygen supply. However, it is not understood how the integrated action of hypoxic pulmonary vasoconstriction affects oxygen transport at the system level. In this study we develop, and make functional predictions with a multi-scale multi-physics model of ventilation-perfusion matching governed by the mechanism of hypoxic pulmonary vasoconstriction. Our model consists of (a) morphometrically realistic 2D pulmonary vascular networks to the level of large arterioles and venules; (b) a tileable lumped-parameter model of vascular fluid and wall mechanics that accounts for the influence of alveolar pressure; (c) oxygen transport accounting for oxygen bound to hemoglobin and dissolved in plasma; and (d) a novel empirical model of hypoxic pulmonary vasoconstriction. Our model simulations predict that under the artificial test condition of a uniform ventilation distribution (1) hypoxic pulmonary vasoconstriction matches perfusion to ventilation; (2) hypoxic pulmonary vasoconstriction homogenizes regional alveolar-capillary oxygen flux; and (3) hypoxic pulmonary vasoconstriction increases whole-lobe oxygen uptake by improving ventilation-perfusion matching.
Assuntos
Hipóxia/fisiopatologia , Modelos Biológicos , Circulação Pulmonar/fisiologia , Relação Ventilação-Perfusão/fisiologia , Algoritmos , Animais , Arteríolas/fisiopatologia , Fenômenos Biofísicos , Biologia Computacional , Simulação por Computador , Humanos , Pulmão/irrigação sanguínea , Pulmão/fisiopatologia , Oxigênio/fisiologia , Troca Gasosa Pulmonar/fisiologia , Ratos , Vasoconstrição/fisiologia , Vênulas/fisiopatologiaRESUMO
To phenotype mechanistic differences between heart failure with reduced (HFrEF) and preserved (HFpEF) ejection fraction, a closed-loop model of the cardiovascular system coupled with patient-specific transthoracic echocardiography (TTE) and right heart catheterization (RHC) data was used to identify key parameters representing haemodynamics. Thirty-one patient records (10 HFrEF, 21 HFpEF) were obtained from the Cardiovascular Health Improvement Project database at the University of Michigan. Model simulations were tuned to match RHC and TTE pressure, volume, and cardiac output measurements in each patient. The underlying physiological model parameters were plotted against model-based norms and compared between HFrEF and HFpEF. Our results confirm the main mechanistic parameter driving HFrEF is reduced left ventricular (LV) contractility, whereas HFpEF exhibits a heterogeneous phenotype. Conducting principal component analysis, k -means clustering, and hierarchical clustering on the optimized parameters reveal (i) a group of HFrEF-like HFpEF patients (HFpEF1), (ii) a classic HFpEF group (HFpEF2), and (iii) a group of HFpEF patients that do not consistently cluster (NCC). These subgroups cannot be distinguished from the clinical data alone. Increased LV active contractility ( p<0.001 ) and LV passive stiffness ( p<0.001 ) at rest are observed when comparing HFpEF2 to HFpEF1. Analysing the clinical data of each subgroup reveals that elevated systolic and diastolic LV volumes seen in both HFrEF and HFpEF1 may be used as a biomarker to identify HFrEF-like HFpEF patients. These results suggest that modelling of the cardiovascular system and optimizing to standard clinical data can designate subgroups of HFpEF as separate phenotypes, possibly elucidating patient-specific treatment strategies. KEY POINTS: Analysis of data from right heart catheterization (RHC) and transthoracic echocardiography (TTE) of heart failure (HF) patients using a closed-loop model of the cardiovascular system identifies key parameters representing haemodynamic cardiovascular function in patients with heart failure with reduced and preserved ejection fraction (HFrEF and HFpEF). Analysing optimized parameters representing cardiovascular function using machine learning shows mechanistic differences between HFpEF groups that are not seen analysing clinical data alone. HFpEF groups presented here can be subdivided into three subgroups: HFpEF1 described as 'HFrEF-like HFpEF', HFpEF2 as 'classic HFpEF', and a third group of HFpEF patients that do not consistently cluster. Focusing purely on cardiac function consistently captures the underlying dysfunction in HFrEF, whereas HFpEF is better characterized by dysfunction in the entire cardiovascular system. Our methodology reveals that elevated left ventricular systolic and diastolic volumes are potential biomarkers for identifying HFrEF-like HFpEF patients.
Assuntos
Insuficiência Cardíaca , Ecocardiografia , Insuficiência Cardíaca/diagnóstico por imagem , Humanos , Aprendizado de Máquina , Prognóstico , Volume Sistólico , Função Ventricular EsquerdaRESUMO
BACKGROUND: Proton magnetic resonance spectroscopy (1 H-MRS) of the human heart is deemed to be a quantitative method to investigate myocardial metabolite content, but thorough validations of in vivo measurements against invasive techniques are lacking. PURPOSE: To determine measurement precision and accuracy for quantifications of myocardial total creatine and triglyceride content with localized 1 H-MRS. STUDY TYPE: Test-retest repeatability and measurement validation study. SUBJECTS: Sixteen volunteers and 22 patients scheduled for open-heart aortic valve replacement or septal myectomy. FIELD STRENGTH/SEQUENCE: Prospectively ECG-triggered respiratory-gated free-breathing single-voxel point-resolved spectroscopy (PRESS) sequence at 3 T. ASSESSMENT: Myocardial total creatine and triglyceride content were quantified relative to the total water content by fitting the 1 H-MR spectra. Precision was assessed with measurement repeatability. Accuracy was assessed by validating in vivo 1 H-MRS measurements against biochemical assays in myocardial tissue from the same subjects. STATISTICAL TESTS: Intrasession and intersession repeatability was assessed using Bland-Altman analyses. Agreement between 1 H-MRS measurements and biochemical assay was tested with regression analyses. RESULTS: The intersession repeatability coefficient for myocardial total creatine content was 41.8% with a mean value of 0.083% ± 0.020% of the total water signal, and 36.7% for myocardial triglyceride content with a mean value of 0.35% ± 0.13% of the total water signal. Ex vivo myocardial total creatine concentrations in tissue samples correlated with the in vivo myocardial total creatine content measured with 1 H-MRS: n = 22, r = 0.44; P < 0.05. Likewise, ex vivo myocardial triglyceride concentrations correlated with the in vivo myocardial triglyceride content: n = 20, r = 0.50; P < 0.05. DATA CONCLUSION: We validated the use of localized 1 H-MRS of the human heart at 3 T for quantitative assessments of in vivo myocardial tissue metabolite content by estimating the measurement precision and accuracy. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 2.
Assuntos
Creatina , Miocárdio , Coração/diagnóstico por imagem , Humanos , Espectroscopia de Prótons por Ressonância Magnética , TriglicerídeosRESUMO
Changes in the myocardial energetics associated with aging-reductions in creatine phosphate/ATP ratio, total creatine, and ATP-mirror changes observed in failing hearts compared to healthy controls. Similarly, both aging and heart failure are associated with significant reductions in cardiac performance and maximal left ventricular cardiac power output compared with young healthy individuals. Based on these observations, we hypothesize that reductions in the concentrations of cytoplasmic adenine nucleotide, creatine, and phosphate pools that occur with aging impair the myocardial capacity to synthesize ATP at physiological free energy levels and that the resulting changes to myocardial energetic status impair the mechanical pumping ability of the heart. The purpose of this study is to test these hypotheses using an age-structured population model for myocardial metabolism in the adult female population and to determine the potential impact of reductions in key myocardial metabolite pools in causing metabolic/energetic and cardiac mechanical dysfunction associated with aging. To test these hypotheses, we developed a population model for myocardial energetics to predict myocardial ATP, ADP, creatine phosphate, creatine, and inorganic phosphate concentrations as functions of cardiac work and age in the adult female population. Model predictions support our hypotheses and are consistent with previous experimental observations. The major findings provide a novel, to our knowledge, theoretical and computational framework for further probing complex relationships between the energetics and performance of the heart with aging.
Assuntos
Envelhecimento/fisiologia , Coração/fisiologia , Modelos Cardiovasculares , Miocárdio/metabolismo , Feminino , Humanos , Fosfatos/metabolismo , Adulto JovemRESUMO
OBJECTIVES: This study sought to determine whether salt-induced ANG II suppression contributes to impaired CBF autoregulation. METHODS: Cerebral autoregulation was evaluated with LDF during graded reductions of blood pressure. Autoregulatory responses in rats fed HS (4% NaCl) diet vs LS (0.4% NaCl) diet were analyzed using linear regression analysis, model-free analysis, and a mechanistic theoretical model of blood flow through cerebral arterioles. RESULTS: Autoregulation was intact in LS-fed animals as MAP was reduced via graded hemorrhage to approximately 50 mm Hg. Short-term (3 days) and chronic (4 weeks) HS diet impaired CBF autoregulation, as evidenced by progressive reductions of laser Doppler flux with arterial pressure reduction. Chronic low dose ANG II infusion (5 mg/kg/min, i.v.) restored CBF autoregulation between the pre-hemorrhage MAP and 50 mm Hg in rats fed short-term HS diet. Mechanistic-based model analysis showed a reduced myogenic response and reduced baseline VSM tone with short-term HS diet, which was restored by ANG II infusion. CONCLUSIONS: Short-term and chronic HS diet lead to impaired autoregulation in the cerebral circulation, with salt-induced ANG II suppression as a major factor in the initiation of impaired CBF regulation.
Assuntos
Angiotensina II/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Artérias Cerebrais/fisiopatologia , Circulação Cerebrovascular/efeitos dos fármacos , Cloreto de Sódio na Dieta/farmacologia , Animais , Velocidade do Fluxo Sanguíneo/efeitos dos fármacos , Ratos , Ratos Sprague-DawleyRESUMO
During aerobic exercise (>65% of maximum oxygen consumption), the primary source of acetyl-CoA to fuel oxidative ATP synthesis in muscle is the pyruvate dehydrogenase (PDH) reaction. This study investigated how regulation of PDH activity affects muscle energetics by determining whether activation of PDH with dichloroacetate (DCA) alters the dynamics of the phosphate potential of rat gastrocnemius muscle during contraction. Twitch contractions were induced in vivo over a broad range of intensities to sample submaximal and maximal aerobic workloads. Muscle phosphorus metabolites were measured in vivo before and after DCA treatment by phosphorus nuclear magnetic resonance spectroscopy. At rest, DCA increased PDH activation compared with control (90 ± 12% vs. 23 ± 3%, P < 0.05), with parallel decreases in inorganic phosphate (Pi) of 17% (1.4 ± 0.2 vs. 1.7 ± 0.1 mM, P < 0.05) and an increase in the free energy of ATP hydrolysis (ΔGATP) (-66.2 ± 0.3 vs. -65.6 ± 0.2 kJ/mol, P < 0.05). During stimulation DCA increased steady-state phosphocreatine (PCr) and the magnitude of ΔGATP, with concomitant reduction in Pi and ADP concentrations. These effects were not due to kinetic alterations in PCr hydrolysis, resynthesis, or glycolytic ATP production and altered the flow-force relationship between mitochondrial ATP synthesis rate and ΔGATP. DCA had no significant effect at 1.0- to 2.0-Hz stimulation because physiological mechanisms at these high stimulation levels cause maximal activation of PDH. These data support a role of PDH activation in the regulation of the energetic steady state by altering the phosphate potential (ΔGATP) at rest and during contraction.
Assuntos
Metabolismo Energético/efeitos dos fármacos , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/enzimologia , Consumo de Oxigênio/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Masculino , Músculo Esquelético/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Oxirredutases/efeitos dos fármacos , Consumo de Oxigênio/fisiologia , Complexo Piruvato Desidrogenase/metabolismo , Complexo Piruvato Desidrogenase/farmacologia , Ratos WistarRESUMO
High capacity and low capacity running rats, HCR and LCR respectively, have been bred to represent two extremes of running endurance and have recently demonstrated disparities in fuel usage during transient aerobic exercise. HCR rats can maintain fatty acid (FA) utilization throughout the course of transient aerobic exercise whereas LCR rats rely predominantly on glucose utilization. We hypothesized that the difference between HCR and LCR fuel utilization could be explained by a difference in mitochondrial density. To test this hypothesis and to investigate mechanisms of fuel selection, we used a constraint-based kinetic analysis of whole-body metabolism to analyze transient exercise data from these rats. Our model analysis used a thermodynamically constrained kinetic framework that accounts for glycolysis, the TCA cycle, and mitochondrial FA transport and oxidation. The model can effectively match the observed relative rates of oxidation of glucose versus FA, as a function of ATP demand. In searching for the minimal differences required to explain metabolic function in HCR versus LCR rats, it was determined that the whole-body metabolic phenotype of LCR, compared to the HCR, could be explained by a ~50% reduction in total mitochondrial activity with an additional 5-fold reduction in mitochondrial FA transport activity. Finally, we postulate that over sustained periods of exercise that LCR can partly overcome the initial deficit in FA catabolic activity by upregulating FA transport and/or oxidation processes.
Assuntos
Simulação por Computador , Condicionamento Físico Animal , Corrida/fisiologia , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Algoritmos , Animais , Dióxido de Carbono/metabolismo , Ácidos Graxos/metabolismo , Glucose/metabolismo , Mitocôndrias/metabolismo , Modelos Estatísticos , Músculo Esquelético/fisiologia , Oxirredução , Oxigênio/metabolismo , Proteômica , Ratos , TermodinâmicaRESUMO
Background Histologic examination of fixed renal tissue is widely used to assess morphology and the progression of disease. Commonly reported metrics include glomerular number and injury. However, characterization of renal histology is a time-consuming and user-dependent process. To accelerate and improve the process, we have developed a glomerular localization pipeline for trichrome-stained kidney sections using a machine learning image classification algorithm.Methods We prepared 4-µm slices of kidneys from rats of various genetic backgrounds that were subjected to different experimental protocols and mounted the slices on glass slides. All sections used in this analysis were trichrome stained and imaged in bright field at a minimum resolution of 0.92 µm per pixel. The training and test datasets for the algorithm comprised 74 and 13 whole renal sections, respectively, totaling over 28,000 glomeruli manually localized. Additionally, because this localizer will be ultimately used for automated assessment of glomerular injury, we assessed bias of the localizer for preferentially identifying healthy or damaged glomeruli.Results Localizer performance achieved an average precision and recall of 96.94% and 96.79%, respectively, on whole kidney sections without evidence of bias for or against glomerular injury or the need for manual preprocessing.Conclusions This study presents a novel and robust application of convolutional neural nets for the localization of glomeruli in healthy and damaged trichrome-stained whole-renal section mounts and lays the groundwork for automated glomerular injury scoring.
Assuntos
Compostos Azo/farmacologia , Amarelo de Eosina-(YS)/farmacologia , Nefropatias/patologia , Glomérulos Renais/patologia , Verde de Metila/farmacologia , Técnicas de Cultura de Tecidos/métodos , Algoritmos , Animais , Biópsia por Agulha , Imuno-Histoquímica , Ratos , Valores de Referência , Coloração e Rotulagem/métodosRESUMO
Right ventricular (RV) failure, which occurs in the setting of pressure overload, is characterized by abnormalities in mechanical and energetic function. The effects of these cell- and tissue-level changes on organ-level RV function are unknown. The primary aim of this study was to investigate the effects of myofiber mechanics and mitochondrial energetics on organ-level RV function in the context of pressure overload using a multiscale model of the cardiovascular system. The model integrates the mitochondria-generated metabolite concentrations that drive intracellular actin-myosin cross-bridging and extracellular myocardial tissue mechanics in a biventricular heart model coupled with simple lumped parameter circulations. Three types of pressure overload were simulated and compared to experimental results. The computational model was able to capture a wide range of cardiovascular physiology and pathophysiology from mild RV dysfunction to RV failure. Our results confirm that, in response to pressure overload alone, the RV is able to maintain cardiac output (CO) and predict that alterations in either RV active myofiber mechanics or RV metabolite concentrations are necessary to decrease CO.
Assuntos
Ventrículos do Coração , Fenômenos Mecânicos , Modelos Cardiovasculares , Fenômenos Biomecânicos , Doenças Cardiovasculares/fisiopatologia , Função Ventricular EsquerdaRESUMO
Mammalian E3 is an essential mitochondrial enzyme responsible for catalyzing the terminal reaction in the oxidative catabolism of several metabolites. E3 is a key regulator of metabolic fuel selection as a component of the pyruvate dehydrogenase complex (PDHc). E3 regulates PDHc activity by altering the affinity of pyruvate dehydrogenase kinase, an inhibitor of the enzyme complex, through changes in reduction and acetylation state of lipoamide moieties set by the NAD(+)/NADH ratio. Thus, an accurate kinetic model of E3 is needed to predict overall mammalian PDHc activity. Here, we have combined numerous literature data sets and new equilibrium spectroscopic experiments with a multitude of independently collected forward and reverse steady-state kinetic assays using pig heart E3. The latter kinetic assays demonstrate a pH-dependent transition of NAD(+) activation to inhibition, shown here, to our knowledge, for the first time in a single consistent data set. Experimental data were analyzed to yield a thermodynamically constrained four-redox-state model of E3 that simulates pH-dependent activation/inhibition and active site redox states for various conditions. The developed model was used to determine substrate/product conditions that give maximal E3 rates and show that, due to non-Michaelis-Menten behavior, the maximal flux is different compared with the classically defined kcat.
Assuntos
Di-Hidrolipoamida Desidrogenase/química , Proteínas Mitocondriais/química , Proteínas Musculares/química , Miocárdio/enzimologia , NAD/química , Animais , Di-Hidrolipoamida Desidrogenase/metabolismo , Ativação Enzimática , Concentração de Íons de Hidrogênio , Cinética , Proteínas Mitocondriais/metabolismo , Proteínas Musculares/metabolismo , NAD/metabolismo , SuínosRESUMO
During human heart failure, the balance of cardiac energy use switches from predominantly fatty acids (FAs) to glucose. We hypothesized that this substrate shift was the result of mitochondrial degeneration; therefore, we examined mitochondrial oxidation and ultrastructure in the failing human heart by using respirometry, transmission electron microscopy, and gene expression studies of demographically matched donor and failing human heart left ventricular (LV) tissues. Surprisingly, respiratory capacities for failing LV isolated mitochondria (n = 9) were not significantly diminished compared with donor LV isolated mitochondria (n = 7) for glycolysis (pyruvate + malate)- or FA (palmitoylcarnitine)-derived substrates, and mitochondrial densities, assessed via citrate synthase activity, were consistent between groups. Transmission electron microscopy images also showed no ultrastructural remodeling for failing vs. donor mitochondria; however, the fraction of lipid droplets (LDs) in direct contact with a mitochondrion was reduced, and the average distance between an LD and its nearest neighboring mitochondrion was increased. Analysis of FA processing gene expression between donor and failing LVs revealed 0.64-fold reduced transcript levels for the mitochondrial-LD tether, perilipin 5, in the failing myocardium (P = 0.003). Thus, reduced FA use in heart failure may result from improper delivery, potentially via decreased perilipin 5 expression and mitochondrial-LD tethering, and not from intrinsic mitochondrial dysfunction.-Holzem, K. M., Vinnakota, K. C., Ravikumar, V. K., Madden, E. J., Ewald, G. A., Dikranian, K., Beard, D. A., Efimov, I. R. Mitochondrial structure and function are not different between nonfailing donor and end-stage failing human hearts.