Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
FASEB J ; 38(5): e23506, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38411466

RESUMO

The reserve pool of primordial follicles (PMFs) is finely regulated by molecules implicated in follicular growth or PMF survival. Anti-Müllerian hormone (AMH), produced by granulosa cells of growing follicles, is known for its inhibitory role in the initiation of PMF growth. We observed in a recent in vivo study that injection of AMH into mice seemed to induce an activation of autophagy. Furthermore, injection of AMH into mice activates the transcription factor FOXO3A which is also known for its implication in autophagy regulation. Many studies highlighted the key role of autophagy in the ovary at different stages of folliculogenesis, particularly in PMF survival. Through an in vitro approach with organotypic cultures of prepubertal mouse ovaries, treated or not with AMH, we aimed to understand the link among AMH, autophagy, and FOXO3A transcription factor. Autophagy and FOXO3A phosphorylation were analyzed by western blot. The expression of genes involved in autophagy was quantified by RT-qPCR. In our in vitro model, we confirmed the decrease in FOXO3A phosphorylation and the induction of autophagy in ovaries incubated with AMH. AMH also induces the expression of genes involved in autophagy. Interestingly, most of these genes are known to be FOXO3A target genes. In conclusion, we have identified a new role for AMH, namely the induction of autophagy, probably through FOXO3A activation. Thus, AMH protects the ovarian reserve not only by inhibiting the growth of PMFs but also by enabling their survival through activation of autophagy.


Assuntos
Hormônio Antimülleriano , Hormônios Peptídicos , Feminino , Animais , Camundongos , Hormônio Antimülleriano/genética , Hormônio Antimülleriano/farmacologia , Folículo Ovariano , Ovário , Fator de Crescimento Transformador beta , Autofagia , Fatores de Transcrição
2.
FASEB J ; 33(1): 1278-1287, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30113879

RESUMO

The follicular ovarian reserve, constituted by primordial follicles (PMFs), is established early in life, then keeps declining regularly along reproductive life. The maintenance of a normal female reproductive function implies the presence of a vast amount of dormant PMFs. This process involves a continuous repression of PMF activation into early growing follicle through the balance between factors activating the initiation of follicular growth, mainly actors of the PI3K signaling pathway, and inhibiting factors such as anti-Müllerian hormone (AMH). Any disruption of this balance may induce follicle depletion and subsequent infertility. It has been recently proposed that cyclophosphamide (Cy), an alkylating agent commonly used for treating breast cancer, triggers PMF activation, further leading to premature ovarian insufficiency. Preventing chemotherapy-induced ovarian dysfunction might represent an interesting option for preserving optimal chances of natural or medically assisted conceptions after healing. The aim of the present study was to evaluate, in a model of Cy-treated pubertal mice, whether AMH administration might restrain PMF depletion. The counting of the total PMF number within mouse ovaries showed that recombinant AMH prevented Cy-induced PMF loss. Western blot analysis revealed activation of PI3K signaling pathway after Cy administration. After AMH injection, FOXO3A phosphorylation, a main actor of PMF activation, was significantly decreased. Taken together, these results support a protective role of AMH against Cy-induced follicular loss. We also provide evidence for a possible role of autophagy in the preservation of follicular pool reserve. Therefore, concomitant recombinant AMH administration during chemotherapy might offer a new option for preserving young patients' fertility.-Sonigo, C., Beau, I., Grynberg, M., Binart, N. AMH prevents primordial ovarian follicle loss and fertility alteration in cyclophosphamide-treated mice.


Assuntos
Hormônio Antimülleriano/fisiologia , Antineoplásicos Alquilantes/farmacologia , Ciclofosfamida/farmacologia , Fertilidade/efeitos dos fármacos , Folículo Ovariano/efeitos dos fármacos , Reserva Ovariana , Animais , Hormônio Antimülleriano/farmacologia , Autofagia , Estro/efeitos dos fármacos , Feminino , Camundongos , Folículo Ovariano/metabolismo , Fosforilação
3.
Hum Mutat ; 40(1): 25-30, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30304577

RESUMO

Primary ovarian insufficiency (POI) is a frequently occurring disease affecting women under 40 years old. Recently, we have analyzed unrelated POI women via whole exome sequencing (WES) and identified NOTCH2 mutations underlying possible functional effects. The present study involved reanalyzing of WES assays. We used in the KGN granulosa-like cell model, a synthetic gene reporter construct driving luciferase gene expression to assess the functional effects of five NOTCH2 mutations identified in POI patients. We found that NOTCH2-p.Ser1804Leu, p.Ala2316Val, and p.Pro2359Ala mutations had a functional impact on the protein's transcriptional activity. The results have demonstrated for the first time that NOTCH2 mutations contribute to POI etiology. We therefore recommend sequencing NOTCH2's open reading frame in large panels of POI patients to establish an accurate genotype-phenotype correlation. We cannot rule out the fact that patients affected by Alagille syndrome carrying NOTCH2 mutations may suffer ovarian dysfunction.


Assuntos
Predisposição Genética para Doença , Mutação de Sentido Incorreto/genética , Insuficiência Ovariana Primária/genética , Receptor Notch2/genética , Sequência de Aminoácidos , Feminino , Humanos , Receptor Notch2/química , Transcrição Gênica
4.
Genet Med ; 21(4): 930-938, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30224786

RESUMO

PURPOSE: Primary ovarian insufficiency (POI) is a frequent disorder that affects ~1% of women under 40 years of age. POI, which is characterized by the premature depletion of ovarian follicles and elevated plasma levels of follicle-stimulating hormone (FSH), leads to infertility. Although various etiological factors have been described, including chromosomal abnormalities and gene variants, most cases remain idiopathic. The aim of the present study was to identify and validate functionally new sequence variants in ATG (autophagy-related genes) leading to POI. METHODS: We have reanalyzed, in silico, the exome sequencing data from a previously reported work performed in 69 unrelated POI women. Functional experiments using a classical hallmark of autophagy, the microtubule-associated protein 1 light chain 3ß (LC3), were then used to link these genes to this lysosomal degradation pathway. RESULTS: We venture a functional link between ATG7 and ATG9A variants and POI. We demonstrated that variant ATG7 and ATG9A led to a decrease in autophagosome biosynthesis and consequently to an impairment of autophagy, a key biological process implicated in the preservation of the primordial follicles forming the ovarian reserve. CONCLUSION: Our results unveil that impaired autophagy is a novel pathophysiological mechanism involved in human POI.


Assuntos
Proteína 7 Relacionada à Autofagia/genética , Proteínas Relacionadas à Autofagia/genética , Autofagia/genética , Proteínas de Membrana/genética , Insuficiência Ovariana Primária/genética , Proteínas de Transporte Vesicular/genética , Adulto , Feminino , Hormônio Foliculoestimulante/genética , Predisposição Genética para Doença , Humanos , Mutação com Perda de Função/genética , Menopausa Precoce/genética , Insuficiência Ovariana Primária/patologia , Sequenciamento do Exoma
5.
FASEB J ; 32(9): 4791-4797, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29596024

RESUMO

Prolactin (PRL), whose principal role is regulation of lactation, is mainly synthesized and secreted by lactotroph anterior pituitary cells. Its signaling is exerted via a transmembrane PRL receptor (PRLR) expressed in a wide variety of tissues, including the anterior pituitary. Dopamine, which is secreted by tuberoinfundibular hypothalamic neurons, is the major inhibitory regulator of prolactin secretion. Although PRL is well established to stimulate hypothalamic dopamine secretion, thereby exerting a negative feedback regulation on its own release, autocrine or paracrine actions of PRL on lactotroph cells have also been suggested. Within the pituitary, PRL may inhibit both lactotroph proliferation and secretion, but in vivo evaluation of these putative functions is limited. To determine whether the autocrine actions of prolactin have a significant role in the physiologic function of lactotrophs in vivo, we examined the consequences of conditional deletion of Prlr in lactotroph cells using a novel mouse line with loxP sites flanking the Prlr gene ( Prlrlox/lox) and Cre-recombinase (Cre) expressed under the control of the pituitary-specific Prl promoter. Prlrlox/lox/Prl-Cre mice have normal PRL levels and did not develop any pituitary lactotroph adenoma, even at 20 mo of age. Nevertheless, Prlrlox/lox/Prl-Cre mice displayed an increased dopaminergic inhibitory tone compared with control Prlrlox/lox mice. These results elegantly confirm an autocrine/paracrine feedback of PRL on lactotroph cells in vivo, which can be fully compensated by an intact hypothalamic feedback system.-Bernard, V., Lamothe, S., Beau, I., Guillou, A., Martin, A., Le Tissier, P., Grattan, D., Young, J., Binart, N. Autocrine actions of prolactin contribute to the regulation of lactotroph function in vivo.


Assuntos
Comunicação Autócrina/fisiologia , Lactotrofos/metabolismo , Prolactina/metabolismo , Receptores da Prolactina/metabolismo , Animais , Hipotálamo/metabolismo , Integrases/metabolismo , Lactação/metabolismo , Camundongos Transgênicos , Hipófise/metabolismo , Adeno-Hipófise/metabolismo , Receptores da Prolactina/genética , Transdução de Sinais/fisiologia
6.
Nature ; 502(7470): 194-200, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24089209

RESUMO

Nutrient deprivation is a stimulus shared by both autophagy and the formation of primary cilia. The recently discovered role of primary cilia in nutrient sensing and signalling motivated us to explore the possible functional interactions between this signalling hub and autophagy. Here we show that part of the molecular machinery involved in ciliogenesis also participates in the early steps of the autophagic process. Signalling from the cilia, such as that from the Hedgehog pathway, induces autophagy by acting directly on essential autophagy-related proteins strategically located in the base of the cilium by ciliary trafficking proteins. Whereas abrogation of ciliogenesis partially inhibits autophagy, blockage of autophagy enhances primary cilia growth and cilia-associated signalling during normal nutritional conditions. We propose that basal autophagy regulates ciliary growth through the degradation of proteins required for intraflagellar transport. Compromised ability to activate the autophagic response may underlie some common ciliopathies.


Assuntos
Autofagia/fisiologia , Cílios/fisiologia , Animais , Autofagia/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Cílios/metabolismo , Proteínas Hedgehog/metabolismo , Camundongos , Transporte Proteico , Transdução de Sinais
7.
Int J Mol Sci ; 20(21)2019 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-31717833

RESUMO

Cancer treatment, such as chemotherapy, induces early ovarian follicular depletion and subsequent infertility. In order to protect gametes from the gonadotoxic effects of chemotherapy, several fertility preservation techniques-such as oocyte or embryo cryopreservation with or without ovarian stimulation, or cryopreservation of the ovarian cortex-should be considered. However, these methods may be difficult to perform, and the future use of cryopreserved germ cells remains uncertain. Therefore, improving the methods currently available and developing new strategies to preserve fertility represent major challenges in the area of oncofertility. Animal and ovarian culture models have been used to decipher the effects of different cytotoxic agents on ovarian function and several theories regarding chemotherapy gonadotoxicity have been raised. For example, cytotoxic agents might (i) have a direct detrimental effect on the DNA of primordial follicles constituting the ovarian reserve and induce apoptosis; (ii) induce a massive growth of dormant follicles, which are then destroyed; or (ii) induce vascular ovarian damage. Thanks to improvements in the understanding of the mechanisms involved, a large number of studies have been carried out to develop molecules limiting the negative impact of chemotherapy on the ovaries.


Assuntos
Antineoplásicos/efeitos adversos , Preservação da Fertilidade/métodos , Ovário/citologia , Insuficiência Ovariana Primária/induzido quimicamente , Animais , Criopreservação , Feminino , Humanos , Modelos Animais , Ovário/efeitos dos fármacos
8.
Hum Mol Genet ; 25(23): 5223-5233, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27798098

RESUMO

Premature ovarian insufficiency (POI) is a clinical syndrome defined by a loss of ovarian activity before the age of 40. Its pathogenesis is still largely unknown, but increasing evidences support a genetic basis in most cases. Among these, heterozygous mutations in NOBOX, a homeobox gene encoding a transcription factor expressed specifically by oocyte and granulosa cells within the ovary, have been reported in ∼6% of women with sporadic POI. The pivotal role of NOBOX in early folliculogenesis is supported by findings in knock-out mice. Here, we report the genetic screening of 107 European women with idiopathic POI, recruited in various settings, and the molecular and functional characterization of the identified variants to evaluate their involvement in POI onset. Specifically, we report the identification of two novel and two recurrent heterozygous NOBOX variants in 7 out of 107 patients, with a prevalence of 6.5% (upper 95% confidence limit of 11.17%). Furthermore, immunolocalization, Western Blot and transcriptional assays conducted in either HEK293T or CHO cells revealed that all the studied variants (p.R44L, p.G91W, p.G111R, p.G152R, p.K273*, p.R449* and p.D452N) display variable degrees of functional impairment, including defects in transcriptional activity, autophagosomal degradation, nuclear localization or protein instability. Several variants conserve the ability to interact with FOXL2 in intracellular aggregates. Their inability to sustain gene expression, together with their likely aberrant effects on protein stability and degradation, make the identified NOBOX mutations a plausible cause of POI onset.


Assuntos
Núcleo Celular/genética , Fatores de Transcrição Forkhead/metabolismo , Proteínas de Homeodomínio/genética , Menopausa Precoce/genética , Insuficiência Ovariana Primária/genética , Estabilidade Proteica , Fatores de Transcrição/genética , Adolescente , Adulto , Animais , Células CHO , Cricetulus , Feminino , Proteína Forkhead Box L2 , Fatores de Transcrição Forkhead/genética , Predisposição Genética para Doença , Células HEK293 , Heterozigoto , Humanos , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Insuficiência Ovariana Primária/epidemiologia , Insuficiência Ovariana Primária/patologia , Agregados Proteicos/genética
9.
Mol Cell ; 39(4): 485-6, 2010 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-20797620

RESUMO

Chaperone-mediated autophagy (CMA) is involved in cellular quality control, and in the response to stress, deterioration in CMA contributes to the aging phenotype and to various disorders. The paper by Bandyopadhyay et al. in this issue of Molecular Cell demonstrates the role of GTP binding by elongation factor 1 alpha (EF1alpha) in regulating the lysosomal uptake of CMA substrates.

10.
BMC Med Genet ; 18(1): 44, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28446136

RESUMO

BACKGROUND: Spontaneous ovarian hyperstimulation syndrome (sOHSS) is a rare event occurring mostly during natural pregnancy. Among described etiologies, some activating mutations of FSH receptor (FSHR) have been identified. CASE PRESENTATION: We report hereby the case of a non-pregnant women with three episodes of sOHSS. Hormonal evaluation was normal and no pituitary adenoma was detected. However, genetic analysis identified a novel heterozygous FSHR mutation (c.1901 G > A). This R634H mutation is the first described in the cytoplasmic tail of the receptor. Functional analysis failed to reveal constitutive activity of the mutant but a decreased cAMP production in response to FSH. The weak activity of this mutant is correlated with a markedly reduced cell surface expression. CONCLUSION: Pathophysiology of non gestationnal sOHSS is still ill established. The molecular characterization of this new mutant indicates that it might not be at play. Therefore, further investigations are needed to improve knowledge of the molecular mechanism of this syndrome.


Assuntos
Citoplasma/metabolismo , Mutação , Síndrome de Hiperestimulação Ovariana/genética , Receptores do FSH/genética , Adulto , Sequência de Aminoácidos , Animais , Feminino , Humanos , Receptores do FSH/química , Homologia de Sequência de Aminoácidos
11.
Hum Reprod ; 32(7): 1512-1520, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28505269

RESUMO

STUDY QUESTION: Is it possible to identify new mutations potentially associated with non-syndromic primary ovarian insufficiency (POI) via whole-exome sequencing (WES)? SUMMARY ANSWER: WES is an efficient tool to study genetic causes of POI as we have identified new mutations, some of which lead to protein destablization potentially contributing to the disease etiology. WHAT IS KNOWN ALREADY: POI is a frequently occurring complex pathology leading to infertility. Mutations in only few candidate genes, mainly identified by Sanger sequencing, have been definitively related to the pathogenesis of the disease. STUDY DESIGN, SIZE, DURATION: This is a retrospective cohort study performed on 69 women affected by POI. PARTICIPANTS/MATERIALS, SETTING, METHODS: WES and an innovative bioinformatics analysis were used on non-synonymous sequence variants in a subset of 420 selected POI candidate genes. Mutations in BMPR1B and GREM1 were modeled by using fragment molecular orbital analysis. MAIN RESULTS AND THE ROLE OF CHANCE: Fifty-five coding variants in 49 genes potentially related to POI were identified in 33 out of 69 patients (48%). These genes participate in key biological processes in the ovary, such as meiosis, follicular development, granulosa cell differentiation/proliferation and ovulation. The presence of at least two mutations in distinct genes in 42% of the patients argued in favor of a polygenic nature of POI. LIMITATIONS, REASONS FOR CAUTION: It is possible that regulatory regions, not analyzed in the present study, carry further variants related to POI. WIDER IMPLICATIONS OF THE FINDINGS: WES and the in silico analyses presented here represent an efficient approach for mapping variants associated with POI etiology. Sequence variants presented here represents potential future genetic biomarkers. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by the Universidad del Rosario and Colciencias (Grants CS/CIGGUR-ABN062-2016 and 672-2014). Colciencias supported Liliana Catherine Patiño´s work (Fellowship: 617, 2013). The authors declare no conflict of interest.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Predisposição Genética para Doença , Peptídeos e Proteínas de Sinalização Intercelular/genética , Modelos Moleculares , Mutação , Insuficiência Ovariana Primária/genética , Adulto , Substituição de Aminoácidos , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/química , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Estudos de Coortes , Biologia Computacional , Sistemas Inteligentes , Feminino , França , Estudo de Associação Genômica Ampla , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Simulação de Dinâmica Molecular , Polimorfismo de Nucleotídeo Único , Insuficiência Ovariana Primária/metabolismo , Estabilidade Proteica , Encaminhamento e Consulta , Estudos Retrospectivos , Sequenciamento do Exoma , Adulto Jovem
12.
Neuroendocrinology ; 103(6): 738-45, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26641246

RESUMO

BACKGROUND/AIMS: No genetic anomalies specifically predisposing humans to prolactinomas have so far been identified. The prolactin receptor (PRLR) is a good candidate, however, as Prlr knockout mice develop prolactinomas, and a case of familial hyperprolactinemia has been linked to PRLR mutation. The main objective of this study was to detect germline PRLR mutations in patients with sporadic prolactinomas unrelated to AIP or MEN1 mutation. METHODS: We sequenced all PRLR exons and intron-exon junctions on genomic DNA from 88 patients with a median age of 24 years. RESULTS: We identified 4 PRLR variations (p.Ile76Val, p.Ile146Leu, p.Glu108Lys and p.Glu554Gln) in 16 patients. One patient had the rare variant p.Glu554Gln in the heterozygous state. Another patient had the extremely rare p.Glu108Lys variant described here for the first time. The other 2 variants (p.Ile76Val and p.Ile146Leu) are relatively common in the general population. All these 4 variants have been functionally tested in vitro and have no effect on PRLR expression, localization and signaling after prolactin stimulation. CONCLUSION: Inactivating germline variations of PRLR are not associated with sporadic prolactinoma in this series. Nevertheless, somatic disruption of PRLR has not been excluded in this subset of pituitary tumors.


Assuntos
Mutação em Linhagem Germinativa/genética , Neoplasias Hipofisárias/genética , Prolactinoma/genética , Receptores da Prolactina/genética , Adolescente , Adulto , Análise de Variância , Animais , Células COS , Criança , Chlorocebus aethiops , Estudos de Coortes , Simulação por Computador , Células HEK293 , Humanos , Imunoprecipitação , Pessoa de Meia-Idade , Modelos Moleculares , Mutagênese Sítio-Dirigida/métodos , Receptores da Prolactina/metabolismo , Fator de Transcrição STAT5/metabolismo , Transfecção , Adulto Jovem
13.
J Virol ; 87(2): 859-71, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23115300

RESUMO

Autophagy is now known to be an essential component of host innate and adaptive immunity. Several herpesviruses have developed various strategies to evade this antiviral host defense. Herpes simplex virus 1 (HSV-1) blocks autophagy in fibroblasts and in neurons, and the ICP34.5 protein is important for the resistance of HSV-1 to autophagy because of its interaction with the autophagy machinery protein Beclin 1. ICP34.5 also counteracts the shutoff of protein synthesis mediated by the double-stranded RNA (dsRNA)-dependent protein kinase PKR by inhibiting phosphorylation of the eukaryotic translation initiation factor 2α (eIF2α) in the PKR/eIF2α signaling pathway. Us11 is a late gene product of HSV-1, which is also able to preclude the host shutoff by direct inhibition of PKR. In the present study, we unveil a previously uncharacterized function of Us11 by demonstrating its antiautophagic activity. We show that the expression of Us11 is able to block autophagy and autophagosome formation in both HeLa cells and fibroblasts. Furthermore, immediate-early expression of Us11 by an ICP34.5 deletion mutant virus is sufficient to render the cells resistant to PKR-induced and virus-induced autophagy. PKR expression and the PKR binding domain of Us11 are required for the antiautophagic activity of Us11. However, unlike ICP34.5, Us11 did not interact with Beclin 1. We suggest that the inhibition of autophagy observed in cells infected with HSV-1 results from the activity of not only ICP34.5 on Beclin 1 but also Us11 by direct interaction with PKR.


Assuntos
Autofagia , Herpesvirus Humano 1/patogenicidade , Interações Hospedeiro-Patógeno , Proteínas de Ligação a RNA/metabolismo , Proteínas Virais/metabolismo , eIF-2 Quinase/metabolismo , Linhagem Celular , Células Epiteliais/fisiologia , Células Epiteliais/virologia , Fibroblastos/fisiologia , Fibroblastos/virologia , Herpesvirus Humano 1/imunologia , Humanos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas
15.
J Virol ; 86(5): 2571-84, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22205736

RESUMO

Human cytomegalovirus modulates macroautophagy in two opposite directions. First, HCMV stimulates autophagy during the early stages of infection, as evident by an increase in the number of autophagosomes and a rise in the autophagic flux. This stimulation occurs independently of de novo viral protein synthesis since UV-inactivated HCMV recapitulates the stimulatory effect on macroautophagy. At later time points of infection, HCMV blocks autophagy (M. Chaumorcel, S. Souquere, G. Pierron, P. Codogno, and A. Esclatine, Autophagy 4:1-8, 2008) by a mechanism that requires de novo viral protein expression. Exploration of the mechanisms used by HCMV to block autophagy unveiled a robust increase of the cellular form of Bcl-2 expression. Although this protein has an anti-autophagy effect via its interaction with Beclin 1, it is not responsible for the inhibition induced by HCMV, probably because of its phosphorylation by c-Jun N-terminal kinase. Here we showed that the HCMV TRS1 protein blocks autophagosome biogenesis and that a TRS1 deletion mutant is defective in autophagy inhibition. TRS1 has previously been shown to neutralize the PKR antiviral effector molecule. Although phosphorylation of eIF2α by PKR has been described as a stimulatory signal to induce autophagy, the PKR-binding domain of TRS1 is dispensable to its inhibitory effect. Our results show that TRS1 interacts with Beclin 1 to inhibit autophagy. We mapped the interaction with Beclin 1 to the N-terminal region of TRS1, and we demonstrated that the Beclin 1-binding domain of TRS1 is essential to inhibit autophagy.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Infecções por Citomegalovirus/metabolismo , Infecções por Citomegalovirus/fisiopatologia , Citomegalovirus/metabolismo , Regulação para Baixo , Proteínas de Membrana/metabolismo , Proteínas Virais/metabolismo , Proteínas Reguladoras de Apoptose/genética , Autofagia , Proteína Beclina-1 , Linhagem Celular , Citomegalovirus/genética , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/virologia , Humanos , Proteínas de Membrana/genética , Ligação Proteica , Proteínas Virais/genética
17.
Ann Endocrinol (Paris) ; 84(3): 382-387, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36967045

RESUMO

Chemotherapy to treat cancer is usually responsible for early ovarian follicle depletion. Ovarian damage induced by cancer treatments frequently results in infertility in surviving patients of childbearing age. Several fertility preservation techniques have been developed. Nowadays, oocyte or embryo cryopreservation with or without ovarian stimulation and cryopreservation of the ovarian cortex are the most commonly used. However, these methods may be difficult to implement in some situations, and subsequent use of the cryopreserved germ cells remains uncertain, with no guarantee of pregnancy. Improved knowledge of the molecular mechanisms and signaling pathways involved in chemotherapy-induced ovarian damage is therefore necessary, to develop new strategies for fertility preservation. The effects of various chemotherapies have been studied in animal models or in vitro on ovarian cultures, suggesting various mechanisms of gonadotoxicity. Today the challenge is to develop molecules and techniques to limit the negative impact of chemotherapy on the ovaries, using experimental models, especially in animals. In this review, the various theories concerning ovarian damage induced by chemotherapy will be reviewed and emerging approaches for ovarian protection will be explained.


Assuntos
Preservação da Fertilidade , Ovário , Gravidez , Animais , Feminino , Folículo Ovariano , Oócitos , Preservação da Fertilidade/métodos , Criopreservação/métodos
18.
Infect Immun ; 80(5): 1891-9, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22371374

RESUMO

We recently documented the neutrophil response to enterovirulent diffusely adherent Escherichia coli expressing Afa/Dr fimbriae (Afa/Dr DAEC), using the human myeloid cell line PLB-985 differentiated into fully mature neutrophils. Upon activation, particularly during infections, neutrophils release neutrophil extracellular traps (NETs), composed of a nuclear DNA backbone associated with antimicrobial peptides, histones, and proteases, which entrap and kill pathogens. Here, using fluorescence microscopy and field emission scanning electron microscopy, we observed NET production by PLB-985 cells infected with the Afa/Dr wild-type (WT) E. coli strain C1845. We found that these NETs were able to capture, immobilize, and kill WT C1845 bacteria. We also developed a coculture model of human enterocyte-like Caco-2/TC7 cells and PLB-985 cells previously treated with WT C1845 and found, for the first time, that the F-actin cytoskeleton of enterocyte-like cells is damaged in the presence of bacterium-induced NETs and that this deleterious effect is prevented by inhibition of protease release. These findings provide new insights into the neutrophil response to bacterial infection via the production of bactericidal NETs and suggest that NETs may damage the intestinal epithelium, particularly in situations such as inflammatory bowel diseases.


Assuntos
Adesinas de Escherichia coli/metabolismo , Enterócitos/citologia , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Neutrófilos/fisiologia , alfa-Defensinas/metabolismo , Adesinas de Escherichia coli/genética , Linhagem Celular , Técnicas de Cocultura , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Histonas/metabolismo , Humanos , Peptídeo Hidrolases/metabolismo
19.
Cell Microbiol ; 13(5): 764-85, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21352462

RESUMO

CEACAM1 expressed by granulocytes and epithelial cells is recognized as a membrane-associated receptor by some Gram-negative pathogens. Here we report a previously unsuspected role of human CEACAM1-4L (hCEACAM1-4L) in polarized epithelial cells. We find that in contrast with non-transfected cells, Madin Darby Canine Kidney strain II (MDCK) engineered for the apical expression of the long cytoplasmic chain protein hCEACAM1-4L showed a serum-independent increase in the phosphorylation of the extracellular signal-regulated kinase 1/2 (Erk1/2) and p38 mitogen-activated protein kinases (MAPKs) after treatment with lipopolysaccharide (LPS) of wild-type, diffusely adhering Afa/Dr Escherichia coli (Afa/Dr DAEC) strain IH11128. Aggregates of FITC-LPS bind the apical domain of MDCK-hCEACAM1-4L cells colocalizing with the apically expressed hCEACAM1-4L protein and do not bind MDCK-pCEP cells, and surface plasmon resonance analysis shows that LPS binds to the extracellular domain of the CEACAM1-4L protein. We showed that cell polarization and lipid rafts positively control the LPS-IH11128-induced phosphorylation of Erk1/2 in MDCK-hCEACAM1-4L cells. Structure-function analysis using mutated hCEACAM1-4L protein shows that the cytoplasmic domain of the protein is needed for LPS-induced MAPK signalling, and that phosphorylation of Tyr-residues is not increased in association with MAPK signalling. The hCEACAM1-4L-dependent Erk1/2 phosphorylation develops in the presence of lipid A and does not develop in the presence of penta-acylated LPS. Finally, small interfering RNA (siRNA) silencing of canine TLR4 abolishes the hCEACAM1-4L-dependent, LPS-induced phosphorylation of Erk1/2. Collectively, our results support the notion that the apically expressed, full-length hCEACAM1-4L protein functions as a novel LPS-conveying molecule at the mucosal surface of polarized epithelial cells for subsequent MD-2/TLR4 receptor-dependent MAPK Erk1/2 and p38 signalling.


Assuntos
Antígenos CD/metabolismo , Moléculas de Adesão Celular/metabolismo , Rim/metabolismo , Sistema de Sinalização das MAP Quinases , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Receptor 4 Toll-Like/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Antígenos CD/genética , Moléculas de Adesão Celular/genética , Linhagem Celular , Polaridade Celular , Cães , Escherichia coli/química , Engenharia Genética , Humanos , Lipídeo A , Lipopolissacarídeos/imunologia , Microdomínios da Membrana/metabolismo , Mucosa/metabolismo , Mucosa/fisiologia , Fosforilação , Isoformas de Proteínas/genética , Interferência de RNA , RNA Interferente Pequeno , Ressonância de Plasmônio de Superfície , Receptor 4 Toll-Like/genética
20.
Infect Immun ; 79(7): 2519-34, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21518786

RESUMO

Afa/Dr fimbriae constitute the major virulence factor of diffusely adhering Escherichia coli (Afa/Dr DAEC). After recognizing membrane-bound signaling receptors, they trigger cell responses. One of these receptors is the human decay-accelerating factor (hDAF). It has previously been reported that the binding of Afa/Dr fimbriae to hDAF quickly induces recruitment of hDAF around adhering bacteria. The aim of our study is to analyze the role of Src kinases in the Dr fimbria-induced recruitment of hDAF. Using biochemical methods and confocal microscopy followed by 3-dimensional (3D) analysis, we have shown that the activation and cell membrane targeting of Src kinases are necessary for the recruitment and organization of hDAF around adhering bacteria. We identified c-Src to be the specific kinase involved in this process. Using a set of Src-green fluorescent protein mutants, we showed that the catalytic activity and the Src homology 2 (SH2) and SH3 domains of the Src kinases are necessary for Dr fimbria-induced hDAF mobilization to occur. In addition, using mutated Dr fimbriae and a set of mutated hDAFs in which each of the complement control protein (CCP) domains had successively been deleted, we found that the aspartic acids at position 54 in the Dr fimbriae and in CCP domain 4 of hDAF played pivotal roles in the mobilization of the Src kinases and hDAF, respectively.


Assuntos
Antígenos CD55/metabolismo , Escherichia coli/patogenicidade , Proteínas de Fímbrias/metabolismo , Quinases da Família src/metabolismo , Adesinas de Escherichia coli/química , Adesinas de Escherichia coli/metabolismo , Sequência de Aminoácidos , Animais , Antígenos CD/metabolismo , Aderência Bacteriana , Antígenos CD55/química , Células CHO , Moléculas de Adesão Celular/metabolismo , Cricetinae , Cricetulus , Escherichia coli/fisiologia , Proteínas de Escherichia coli/metabolismo , Fímbrias Bacterianas/metabolismo , Imunofluorescência , Glicosilfosfatidilinositóis/metabolismo , Proteínas de Fluorescência Verde , Células HeLa , Humanos , Immunoblotting , Imunoprecipitação , Microdomínios da Membrana , RNA Interferente Pequeno , Transdução de Sinais , Domínios de Homologia de src , Quinases da Família src/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA