Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
J Nat Prod ; 87(2): 424-438, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38289177

RESUMO

Ever since the isolation of Amycolatopsis mediterranei in 1957, this strain has been the focus of research worldwide. In the last 60 years or more, our understanding of the taxonomy, development of cloning vectors and conjugation system, physiology, genetics, genomics, and biosynthetic pathway of rifamycin B production in A. mediterranei has substantially increased. In particular, the development of cloning vectors, transformation system, characterization of the rifamycin biosynthetic gene cluster, and the regulation of rifamycin B production by the pioneering work of Heinz Floss have made the rifamycin polyketide biosynthetic gene cluster (PKS) an attractive target for extensive genetic manipulations to produce rifamycin B analogues which could be effective against multi-drug-resistant tuberculosis. Additionally, a better understanding of the regulation of rifamycin B production and the application of newer genomics tools, including CRISPR-assisted genome editing systems, might prove useful to overcome the limitations associated with low production of rifamycin analogues.


Assuntos
Actinomycetales , Rifamicinas , Amycolatopsis , Vias Biossintéticas/genética , Rifamicinas/metabolismo
2.
Biotechnol Bioeng ; 120(5): 1411-1422, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36775891

RESUMO

In Streptomyces rimosus M527, the oxytetracycline (OTC) biosynthetic gene cluster is not expressed under laboratory conditions. In this study a reported-guided mutant selection (RGMS) procedure was used to activate the cluster. The double-reporter plasmid pAGT was constructed in which gusA encoding a ß-glucuronidase and tsr encoding a thiostrepton resistance methyltransferase were placed under the control of the native promoter of oxyA gene (PoxyA ). Plasmid pAGT was introduced and integrated into the chromosome of S. rimosus M527 by conjugation, yielding initial strain M527-pAGT. Subsequently, mutants of M527-pAGT were generated by using ribosome engineering technology. The mutants harboring activated OTC gene cluster were selected based on visual observation of GUS activity and thiostrepton resistance. Finally, mutant M527-pAGT-R7 was selected producing OTC in a concentration of 235.2 mg/L. In this mutant transcriptional levels of oxysr genes especial oxyAsr gene were increased compared to wild-type strain S. rimosus M527. The mutant M527-pAGT-R7 showed antagonistic activities against Gram-negative and Gram-positive strains. All data indicate that the OTC gene cluster was successfully activated using the RGMS method.


Assuntos
Oxitetraciclina , Streptomyces rimosus , Streptomyces rimosus/genética , Tioestreptona , Família Multigênica , Regiões Promotoras Genéticas
3.
Microb Cell Fact ; 22(1): 32, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36810073

RESUMO

BACKGROUND: Streoptomyces rimosus M527 is a producer of the polyene macrolide rimocidin which shows activity against various plant pathogenic fungi. Notably, the regulatory mechanisms underlying rimocidin biosynthesis are yet to be elucidated. RESULTS: In this study, using domain structure and amino acid alignment and phylogenetic tree construction, rimR2, which located in the rimocidin biosynthetic gene cluster, was first found and identified as a larger ATP-binding regulators of the LuxR family (LAL) subfamily regulator. The rimR2 deletion and complementation assays were conducted to explore its role. Mutant M527-ΔrimR2 lost its ability to produce rimocidin. Complementation of M527-ΔrimR2 restored rimocidin production. The five recombinant strains, M527-ER, M527-KR, M527-21R, M527-57R, and M527-NR, were constructed by overexpressing rimR2 gene using the promoters permE*, kasOp*, SPL21, SPL57, and its native promoter, respectively, to improve rimocidin production. M527-KR, M527-NR, and M527-ER exhibited 81.8%, 68.1%, and 54.5% more rimocidin production, respectively, than the wild-type (WT) strain, while recombinant strains M527-21R and M527-57R exhibited no obvious differences in rimocidin production compared with the WT strain. RT-PCR assays revealed that the transcriptional levels of the rim genes were consistent with the changes in rimocidin production in the recombinant strains. Using electrophoretic mobility shift assays, we confirmed that RimR2 can bind to the promoter regions of rimA and rimC. CONCLUSION: A LAL regulator RimR2 was identified as a positive specific-pathway regulator of rimocidin biosynthesis in M527. RimR2 regulates the rimocidin biosynthesis by influencing the transcriptional levels of rim genes and binding to the promoter regions of rimA and rimC.


Assuntos
Polienos , Streptomyces rimosus , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Filogenia , Polienos/metabolismo , Streptomyces rimosus/metabolismo
4.
J Ind Microbiol Biotechnol ; 49(6)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36572395

RESUMO

In this study, we employed a reporter-guided mutation selection (RGMS) strategy to improve the rimocidin production of Streptomyces rimosus M527, which is based on a single-reporter plasmid pAN and atmospheric and room temperature plasma (ARTP). In plasmid pAN, PrimA, a native promoter of the loading module of rimocidin biosynthesis (RimA) was chosen as a target, and the kanamycin resistance gene (neo) under the control of PrimA was chosen as the reporter gene. The integrative plasmid pAN was introduced into the chromosome of S. rimosus M527 by conjugation to yield the initial strain S. rimosus M527-pAN. Subsequently, mutants of M527-pAN were generated by ARTP. 79 mutants were obtained in total, of which 67 mutants showed a higher level of kanamycin resistance (Kanr) than that of the initial strain M527-pAN. The majority of mutants exhibited a slight increase in rimocidin production compared with M527-pAN. Notably, 3 mutants, M527-pAN-S34, S38, and S52, which exhibited highest kanamycin resistance among all Kanr mutants, showed 34%, 52%, and 45% increase in rimocidin production compared with M527-pAN, respectively. Quantitative RT-PCR analysis revealed that the transcriptional levels of neo and rim genes were increased in mutants M527-pAN-S34, S38, and S52 compared with M527-pAN. These results confirmed that the RGMS approach was successful in improving the rimocidin production in S. rimosus M527.


Assuntos
Streptomyces rimosus , Mutação , Canamicina/farmacologia , Plasmídeos/genética
5.
World J Microbiol Biotechnol ; 39(12): 359, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37891332

RESUMO

The transposon mutagenesis strategy has been employed to generate random insertion mutants and analyze the correlation between genes and secondary metabolites in the genus Streptomyces. In this study, our primary objective was to identify an unknown gene involved in rimocidin biosynthesis and elucidate its role in rimocidin production in Streptomyces rimosus M527. To achieve this, we established a random mutant library of S. rimosus M527 using a Tn5 transposon-mediated random mutagenesis strategy. Among the 137 isolated mutants, M527-G10 and M527-W5 exhibited the most significant variations in antagonistic activity against the plant pathogenic fungus Fusarium oxysporum f. sp. cucumerinum. Specifically, M527-G10 displayed a 72.93% reduction, while M527-W5 showed a 49.8% increase in rimocidin production compared to the wild-type (WT) strain S. rimosus M527. Subsequently, we employed a plasmid rescue strategy to identify the insertion loci of the transposon in the genomes of mutants M527-G10 and M527-W5, revealing a response regulator transcription factor (rrt) and a hypothetical protein (hyp), respectively. The roles of rrt and hyp in rimocidin biosynthesis were determined through gene deletion, overexpression in the WT strain, and complemented expression in the transposon mutants. Notably, the gene-deletion mutants M527-ΔRRT and M527-ΔHYP exhibited similar behavior in rimocidin production compared to the corresponding transposon mutants M527-G10 and M527-W5, suggesting that transposon insertions in genes rrt and hyp led to alterations in rimocidin production. Furthermore, both gene deletion and overexpression of rrt and hyp had no discernible effects on cell growth. These results reveal that genes rrt and hyp have positive and negative impacts on rimocidin production in S. rimosus M527, respectively.


Assuntos
Streptomyces rimosus , Streptomyces , Streptomyces rimosus/genética , Streptomyces rimosus/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Polienos , Plasmídeos
6.
Chembiochem ; 23(15): e202200140, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35544615

RESUMO

Nucleocidin is an adenosine derivative containing 4'-fluoro and 5'-O-sulfamoyl substituents. In this study, nucleocidin biosynthesis is examined in two newly discovered producers, Streptomyces virens B-24331 and Streptomyces aureorectus B-24301, which produce nucleocidin and related derivatives at titers 30-fold greater than S. calvus. This enabled the identification of two new O-acetylated nucleocidin derivatives, and a potential glycosyl-O-acetyltransferase. Disruption of nucJ, nucG, and nucI, within S. virens B-24331, specifying a radical SAM/Fe-S dependent enzyme, sulfatase, and arylsulfatase, respectively, led to loss of 5'-O-sulfamoyl biosynthesis, but not fluoronucleoside production. Disruption of nucN, nucK, and nucO specifying an amidinotransferase, and two sulfotransferases respectively, led to loss of fluoronucleoside production. Identification of S. virens B-24331 as a genetically tractable and high producing strain sets the stage for understanding nucleocidin biosynthesis and highlights the utility of using 16S-RNA sequences to identify alternative producers of valuable compounds in the absence of genome sequence data.


Assuntos
Adenosina , Flúor , Adenosina/análogos & derivados , Sulfatases , Ácidos Sulfônicos
7.
Curr Microbiol ; 79(6): 174, 2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35488939

RESUMO

Precursor engineering is an effective strategy for the overproduction of secondary metabolites. The polyene macrolide rimocidin, which is produced by Streptomyces rimosus M527, exhibits a potent activity against a broad range of phytopathogenic fungi. It has been predicted that malonyl-CoA is used as extender units for rimocidin biosynthesis. Based on a systematic analysis of three sets of time-series transcriptome microarray data of S. rimosus M527 fermented in different conditions, the differentially expressed accsr gene that encodes acetyl-CoA carboxylase (ACC) was found. To understand how the formation of rimocidin is being influenced by the expression of the accsr gene and by the concentration of malonyl-CoA, the accsr gene was cloned and over-expressed in the wild-type strain S. rimosus M527 in this study. The recombinant strain S. rimosus M527-ACC harboring the over-expressed accsr gene exhibited better performances based on the enzymatic activity of ACC, intracellular malonyl-CoA concentrations, and rimocidin production compared to S. rimosus M527 throughout the fermentation process. The enzymatic activity of ACC and intracellular concentration of malonyl-CoA of S. rimosus M527-ACC were 1.0- and 1.5-fold higher than those of S. rimosus M527, respectively. Finally, the yield of rimocidin produced by S. rimosus M527-ACC reached 320.7 mg/L, which was 34.0% higher than that of S. rimosus M527. These results confirmed that malonyl-CoA is an important precursor for rimocidin biosynthesis and suggested that an adequate supply of malonyl-CoA caused by accsr gene over-expression led to the improvement in rimocidin production.


Assuntos
Malonil Coenzima A , Streptomyces rimosus , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Malonil Coenzima A/metabolismo , Polienos/metabolismo , Streptomyces rimosus/metabolismo
8.
Nucleic Acids Res ; 48(3): 1583-1598, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31956908

RESUMO

Cyclic dimeric 3'-5' guanosine monophosphate, c-di-GMP, is a ubiquitous second messenger controlling diverse cellular processes in bacteria. In streptomycetes, c-di-GMP plays a crucial role in a complex morphological differentiation by modulating an activity of the pleiotropic regulator BldD. Here we report that c-di-GMP plays a key role in regulating secondary metabolite production in streptomycetes by altering the expression levels of bldD. Deletion of cdgB encoding a diguanylate cyclase in Streptomycesghanaensis reduced c-di-GMP levels and the production of the peptidoglycan glycosyltransferase inhibitor moenomycin A. In contrast to the cdgB mutant, inactivation of rmdB, encoding a phosphodiesterase for the c-di-GMP hydrolysis, positively correlated with the c-di-GMP and moenomycin A accumulation. Deletion of bldD adversely affected the synthesis of secondary metabolites in S. ghanaensis, including the production of moenomycin A. The bldD-deficient phenotype is partly mediated by an increase in expression of the pleiotropic regulatory gene wblA. Genetic and biochemical analyses demonstrate that a complex of c-di-GMP and BldD effectively represses transcription of wblA, thus preventing sporogenesis and sustaining antibiotic synthesis. These results show that manipulation of the expression of genes controlling c-di-GMP pool has the potential to improve antibiotic production as well as activate the expression of silent gene clusters.


Assuntos
Proteínas de Bactérias/genética , Bambermicinas/biossíntese , Produtos Biológicos/metabolismo , GMP Cíclico/análogos & derivados , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética , Proteínas de Bactérias/antagonistas & inibidores , GMP Cíclico/genética , GMP Cíclico/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Escherichia coli/genética , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/genética , Nucleotídeos/genética , Peptidoglicano Glicosiltransferase/antagonistas & inibidores , Fósforo-Oxigênio Liases/genética , Sistemas do Segundo Mensageiro/genética , Streptomycetaceae/genética , Streptomycetaceae/metabolismo , Fatores de Transcrição/antagonistas & inibidores
9.
J Basic Microbiol ; 62(7): 788-800, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35485240

RESUMO

The nucleoside antibiotic, toyocamycin (TM) exhibits excellent potent activity against several phytopathogenic fungi. Despite its importance, little is known about key factors regulating TM biosynthesis and morphological differentiation in Streptomyces diastatochromogenes 1628. Based on proteomics data obtained from the analysis between wild-type (WT) S. diastatochromogenes 1628 strain and mutant strain 1628-T62 having a low yield of TM, we observed that the differentially expressed protein, X0P338, which was proposed to be a regulator of the GntR-family, exhibited a higher expression level in S. diastatochromogenes 1628. Therefore, in this study, to explore whether protein X0P338 was involved in morphological differentiation and biosynthesis of secondary metabolites, especially TM, the gene called the gntRsd -encoding protein X0P338 was cloned and overexpressed in WT strain 1628 and mutant strain 1628-T62, respectively. The results indicated that the overexpression of gntRsd enhanced TM production in both strain 1628 (120.6 mg/L vs. 306.6 mg/L) and strain 1628-T62 (15.6 mg/L vs. 258.9 mg/L). Besides, the overexpression of gntRsd had positive and negative effects on morphological differentiation in strain 1628 and strain 1628-T62, respectively. The results also showed opposite effects on tetraene macrolide production during the overexpression of gntRsd in strain 1628 and strain 1628-T62. Moreover, transcription levels of genes involved in morphological differentiation and secondary metabolites production were affected by the overexpression of gntRsd gene, both in strain 1628 and strain 1628-T62. These results confirm that X0P338 as a GntR-type pleiotropic regulator that regulates the morphological differentiation and biosynthesis of secondary metabolites, and especially has a positive effect on TM biosynthesis.


Assuntos
Streptomyces , Toiocamicina , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Streptomyces/genética , Streptomyces/metabolismo , Toiocamicina/metabolismo
10.
J Basic Microbiol ; 62(6): 750-759, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35076122

RESUMO

The nucleoside antibiotic toyocamycin (TM), which is produced by Streptomyces diastatochromogenes 1628, exhibits potent activity against a broad range of phytopathogenic fungi. TM was synthesized through a multi-step reaction, using guanosine triphosphate (GTP) as precursor. Based on a comparison of proteomics data from S. diastatochromogenes 1628 and rifamycin-resistant mutant 1628-T15 with high yield of TM, we determined that the differentially expressed protein X0NBV6 called ribose-phosphate pyrophosphokinase (RHP), which is a rate-limiting enzyme involved in the de novo biosynthesis of GTP, exhibits a higher expression level in mutant 1628-T15. In this study, to elucidate the relationships between RHP, GTP, and TM production, the gene rhp sd encoding RHP was cloned and overexpressed in S. diastatochromogenes strain 1628. The recombinant strain S. diastatochromogenes 1628-RHP exhibited better performance at the transcriptional level of the rhp sd gene, as well as RHP enzymatic activity, intracellular GTP concentration, and TM production, compared to S. diastatochromogenes 1628. Finally, the yield of TM produced by S. diastatochromogenes 1628-RHP (340.2 mg/L) was 133.3% higher than that produced by S. diastatochromogenes1628. Moreover, the transcriptional level of toy genes involved in TM biosynthesis was enhanced due to the overexpression of the rhp sd gene.


Assuntos
Streptomyces , Toiocamicina , Antibacterianos/metabolismo , Guanosina Trifosfato/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Toiocamicina/metabolismo
11.
J Am Chem Soc ; 142(13): 5913-5917, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32182053

RESUMO

The structural diversity of type II polyketides is largely generated by tailoring enzymes. In rishirilide biosynthesis by Streptomyces bottropensis, 13C-labeling studies previously implied extraordinary carbon backbone and side-chain rearrangements. In this work, we employ gene deletion experiments and in vitro enzyme studies to identify key biosynthetic intermediates and expose intricate redox tailoring steps for the formation of rishirilides A, B, and D and lupinacidin A. First, the flavin-dependent RslO5 reductively ring-opens the epoxide moiety of an advanced polycyclic intermediate to form an alcohol. Flavin monooxygenase RslO9 then oxidatively rearranges the carbon backbone, presumably via lactone-forming Baeyer-Villiger oxidation and subsequent intramolecular aldol condensation. While RslO9 can further convert the rearranged intermediate to rishirilide D and lupinacidin A, an additional ketoreductase RslO8 is required for formation of the main products rishirilide A and rishirilide B. This work provides insight into the structural diversification of aromatic polyketide natural products via unusual redox tailoring reactions that appear to defy biosynthetic logic.


Assuntos
Antracenos/metabolismo , Antraquinonas/metabolismo , Carbono/metabolismo , Streptomyces/metabolismo , Antracenos/química , Antraquinonas/química , Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Carbono/química , Oxirredução , Streptomyces/química , Streptomyces/enzimologia
12.
Chembiochem ; 21(18): 2659-2666, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32333627

RESUMO

Nonribosomal peptide synthetases (NRPS) are organized in a modular arrangement. Usually, the modular order corresponds to the assembly of the amino acids in the respective peptide, following the collinearity rule. The WS9326A biosynthetic gene cluster from Streptomyces calvus shows deviations from this rule. Most interesting is the presence of two trans adenylation domains that are located downstream of the modular NRPS arrangement. Adenylation domains are responsible for the activation of their respective amino acids. In this study, we confirmed the involvement of the trans adenylation domains in WS9326A biosynthesis by performing gene knockout experiments and by observing the selective adenylation of their predicted amino acid substrates in vitro. We conclude that the trans adenylation domains are essential for WS9326A biosynthesis. Moreover, both adenylation domains are observed to have MbtH-like protein dependency. Overall, we conclude that the trans adenylation domains are essential for WS9326A biosynthesis.


Assuntos
Streptomyces/química , Biossíntese de Peptídeos Independentes de Ácido Nucleico , Conformação Proteica , Streptomyces/metabolismo
13.
Chembiochem ; 21(6): 780-784, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-31507033

RESUMO

Partially reduced aromatic polyketides are bioactive secondary metabolites or intermediates in the biosynthesis of deoxygenated aromatics. For the antibiotic GTRI-02 (mensalone) in different Streptomyces spp., biosynthesis involving the reduction of a fully aromatized acetyltrihydroxynaphthalene by a naphthol reductase has been proposed and shown in vitro with a fungal enzyme. However, more recently, GTRI-02 has been identified as a product of the ActIII biosynthetic gene cluster from Streptomyces coelicolor A3(2), for which the reduction of a linear polyketide precursor by ActIII ketoreductase, prior to cyclization and aromatization, has been suggested. We have examined three different ketoreductases from bacterial producer strains of GTRI-02 for their ability to reduce mono-, bi-, and tricyclic aromatic substrates. The enzymes reduced 1- and 2-tetralone but not other aromatic substrates. This strongly suggests a reduction of a cyclized but not yet aromatic polyketide intermediate in the biosynthesis of GTRI-02. Implications of the results for the biosynthesis of other secondary polyketidic metabolites are discussed.


Assuntos
Oxirredutases/metabolismo , Policetídeos/metabolismo , Streptomyces/química , Estrutura Molecular , Policetídeos/química , Streptomyces/metabolismo
14.
Appl Microbiol Biotechnol ; 104(23): 10191-10202, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33057790

RESUMO

The polyene macrolide rimocidin, produced by Streptomyces rimosus M527, was found to be highly effective against a broad range of fungal plant pathogens. Current understanding of the regulatory mechanism of rimocidin biosynthesis and morphological differentiation in S. rimosus M527 is limited. NsdA is considered a negative regulator involved in morphological differentiation and biosynthesis of secondary metabolites in some Streptomyces species. In this study, nsdAsr was cloned from S. rimosus M527. The role of nsdAsr in rimocidin biosynthesis and morphological differentiation was investigated by gene deletion, complementation, and over-expression. A ΔnsdAsr mutant was obtained using CRISPR/Cas9. The mutant produced more rimocidin (46%) and accelerated morphological differentiation than the wild-type strain. Over-expression of nsdAsr led to a decrease in rimocidin production and impairment of morphological differentiation. Quantitative RT-PCR analysis revealed that transcription of rim genes responsible for rimocidin biosynthesis was upregulated in the ΔnsdAsr mutant but downregulated in the nsdAsr over-expression strain. Similar effects have been described for Streptomyces coelicolor M145 and the industrial toyocamycin-producing strain Streptomyces diastatochromogenes 1628. KEY POINTS: • A negative regulator for sporulation and rimocidin production was identified. • The CRISPR/Cas9 system was used for gene deletion in S. rimosus M527.


Assuntos
Streptomyces rimosus , Streptomyces , Regulação Bacteriana da Expressão Gênica , Polienos , Streptomyces/genética
15.
Appl Microbiol Biotechnol ; 104(10): 4445-4455, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32221690

RESUMO

The polyene macrolide rimocidin, produced by Streptomyces rimosus M527, is highly effective against a broad range of fungal plant pathogens, but at low yields. Elicitation is an effective method of stimulating the yield of bioactive secondary metabolites. In this study, the biomass and filtrate of a culture broth of Escherichia coli JM109, Bacillus subtilis WB600, Saccharomyces cerevisiae, and Fusarium oxysporum f. sp. cucumerinum were employed as elicitors to promote rimocidin production in S. rimosus M527. Adding culture broth and biomass of S. cerevisiae (A3) and F. oxysporum f. sp. cucumerinum (B4) resulted in an increase of rimocidin production by 51.2% and 68.3% respectively compared with the production under normal conditions in 5-l fermentor. In addition, quantitative RT-PCR analysis revealed that the transcriptions of ten genes (rimA to rimK) located in the gene cluster involved in rimocidin biosynthesis in A3 or B4 elicitation experimental group were all higher than those of a control group. Using a ß-glucuronidase (GUS) reporter system, GUS enzyme activity assay, and Western blot analysis, we discovered that elicitation of A3 or B4 increased protein synthesis in S. rimosus M527. These results demonstrate that the addition of elicitors is a useful approach to improve rimocidin production.Key Points • An effective strategy for enhancing rimocidin production in S. rimosus M527 is demonstrated. • Overproduction of rimocidin is a result of higher expressed structural genes followed by an increase in protein synthesis.


Assuntos
Família Multigênica , Streptomyces rimosus/metabolismo , Bacillus subtilis , Biomassa , Vias Biossintéticas , Meios de Cultura/farmacologia , Escherichia coli , Fusarium , Polienos/metabolismo , Biossíntese de Proteínas , Saccharomyces cerevisiae , Metabolismo Secundário/efeitos dos fármacos , Streptomyces rimosus/efeitos dos fármacos
16.
Molecules ; 25(15)2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32727097

RESUMO

Glycosyltransferases are important enzymes which are often used as tools to generate novel natural products. In this study, we describe the identification and characterization of an inverting N- and O-glycosyltransferase from Saccharopolyspora erythraea NRRL2338. When feeding experiments with 1,4-diaminoanthraquinone in Saccharopolyspora erythraea were performed, the formation of new compounds (U3G and U3DG) was observed by HPLC-MS. Structure elucidation by NMR revealed that U3G consists of two compounds, N1-α-glucosyl-1,4-diaminoanthraquinone and N1-ß-glucosyl-1,4-diaminoanthraquinone. Based on UV and MS data, U3DG is a N1,N4-diglucosyl-1,4-diaminoanthraquinone. In order to find the responsible glycosyltransferase, gene deletion experiments were performed and we identified the glycosyltransferase Sace_3599, which belongs to the CAZy family 1. When Streptomyces albus J1074, containing the dTDP-d-glucose synthase gene oleS and the plasmid pUWL-A-sace_3599, was used as host, U3 was converted to the same compounds. Protein production in Escherichia coli and purification of Sace_3599 was carried out. The enzyme showed glycosyl hydrolase activity and was able to produce mono- and di-N-glycosylated products in vitro. When UDP-α-d-glucose was used as a sugar donor, U3 was stereoselective converted to N1-ß-glucosyl-1,4-diaminoanthraquinone and N1,N4-diglucosyl-1,4-diaminoanthraquinone. The use of 1,4-dihydroxyanthraquinone as a substrate in in vitro experiments also led to the formation of mono-glucosylated and di-glucosylated products, but in lower amounts. Overall, we identified and characterized a novel glycosyltransferase which shows glycohydrolase activity and the ability to glycosylate "drug like" structures forming N- and O-glycosidic bonds.


Assuntos
Antraquinonas/metabolismo , Proteínas de Bactérias/metabolismo , Glicosiltransferases/metabolismo , Saccharopolyspora/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Genoma Bacteriano , Glicosilação , Glicosiltransferases/classificação , Glicosiltransferases/genética , Saccharopolyspora/genética , Homologia de Sequência
17.
Molecules ; 25(8)2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32340131

RESUMO

The biological active compound rishirilide B is produced by Streptomyces bottropensis. The cosmid cos4 contains the complete rishirilide B biosynthesis gene cluster. Its heterologous expression in the host Streptomyces albus J1074 led to the production of rishirilide B as a major compound and to small amounts of rishirilide A, rishirilide D and lupinacidin A. In order to gain more insights into the biosynthesis, gene inactivation experiments and gene expression experiments were carried out. This study lays the focus on the functional elucidation of the genes involved in the early biosynthetic pathway. A total of eight genes were deleted and six gene cassettes were generated. Rishirilide production was not strongly affected by mutations in rslO2, rslO6 and rslH. The deletion of rslK4 and rslO3 led to the formation of polyketides with novel structures. These results indicated that RslK4 and RslO3 are involved in the generation or selection of the starter unit for rishirilide biosynthesis. In the rslO10 mutant strain, two novel compounds were detected, which were also produced by a strain containing solely the genes rslK1, rslK2, rslK3, rslK4, and rslA. rslO1 and rslO4 mutants predominately produce galvaquinones. Therefore, the ketoreductase RslO10 is involved in an early step of rishirilide biosynthesis and the oxygenases RslO1 and RslO4 are most probably acting on an anthracene moiety. This study led to the functional elucidation of several genes of the rishirilide pathway, including rslK4, which is involved in selecting the unusual starter unit for polyketide synthesis.


Assuntos
Antracenos/metabolismo , Vias Biossintéticas , Streptomyces/metabolismo , Antracenos/química , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Estrutura Molecular , Família Multigênica , Streptomyces/genética
18.
Indian J Microbiol ; 60(3): 310-317, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32655198

RESUMO

Amycolatopsis mediterranei S699 produces rifamycin B and successors of this strain are in use for the industrial production of rifamycin B. Semisynthetic derivatives of rifamycin B are used against Mycobacterium tuberculosis that causes tuberculosis. Although the rifamycin biosynthetic gene cluster was characterized two decades ago, the regulation of rifamycin B biosynthesis in Amycolatopsis mediterranei S699 is poorly understood. In this study, we analysed the genome and proteome of Amycolatopsis mediterranei S699 and identified 1102 transcription factors which comprise about 10% of the total genome. Using interactomics approaches we delineated 30 unique transcription factors directly involved in secondary metabolism that regulate rifamycin B biosynthesis. We also predict the role of RifN as hub in controlling the regulation of other genes involved in rifamycin biosynthesis. RifN is important for maintaining the integrity of the rifamycin-network. Thus, these transcription factor can be exploited to improve rifamycin B production in Amycolatopsis mediterranei S699.

19.
Appl Microbiol Biotechnol ; 103(17): 7071-7084, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31256228

RESUMO

The nucleoside antibiotic toyocamycin (TM), which was produced by Streptomyces diastatochromogenes 1628, was found to be highly efficient against a broad range of plant pathogenic fungi. Despite its importance, little is known about the regulation TM biosynthesis. In this study, toyA, located in the TM biosynthetic gene cluster, was identified as a regulatory gene encoding a large ATP-binding regulator of the LuxR family (LAL-family). The role of toyA in TM biosynthesis in S. diastatochromogenes 1628 was investigated by gene deletion, complementation, and over-expression. Gene disruption of toyA resulted in almost loss of TM production. TM production in complemented strain was restored to the level comparable to that in the wild-type strain S. diastatochromogenes 1628. Over-expression of toyA separately controlled by promoter SPL57, SPL21, and permE* in wild-type strain S. diastatochromogenes 1628 led to a 2-fold, 1-fold, and 80% increase in TM production compared with wild-type strain S. diastatochromogenes 1628, respectively. Quantitative RT-PCR analysis revealed that the transcriptional level of toy structural genes was downregulated in the ΔtoyA mutant but restored in complemented strain and further upregulated in the toyA over-expression strain. The detection results from GFP reporter system in Escherichia coli and GUS reporter system and GUS activities in S. albus J1074 and S. diastatochromogenes 1628 showed that ToyA activated the expression of toyB and toyE operon directly and activated the expression of other toy structural genes indirectly. These results indicate that ToyA is essential for TM biosynthesis controlling the expression of structural genes.


Assuntos
Proteínas de Bactérias/metabolismo , Streptomyces/metabolismo , Toiocamicina/biossíntese , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/genética , Vias Biossintéticas/genética , Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Família Multigênica , Mutação , Regiões Promotoras Genéticas , Streptomyces/genética , Fatores de Transcrição/genética
20.
J Ind Microbiol Biotechnol ; 46(5): 697-708, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30697650

RESUMO

Rimocidin is a polyene macrolide that exhibits a strong inhibitory activity against a broad range of plant-pathogenic fungi. In this study, fermentation optimization and ribosome engineering technology were employed to enhance rimocidin production in Streptomyces rimosus M527. After the optimization of fermentation, rimocidin production in S. rimosus M527 increased from 0.11 ± 0.01 to 0.23 ± 0.02 g/L during shake-flask experiments and reached 0.41 ± 0.05 g/L using 5-L fermentor. Fermentation optimization was followed by the generation of mutants of S. rimosus M527 through treatment of the strain with different concentrations of gentamycin (Gen) or rifamycin. One Genr mutant named S. rimosus M527-G37 and one Rifr mutant named S. rimosus M527-R5 showed increased rimocidin production. Double-resistant (Genr and Rifr) mutants were selected using S. rimosus M527-G37 and S. rimosus M527-R5, and subsequently tested. One mutant, S. rimosus M527-GR7, which was derived from M527-G37, achieved the greatest cumulative improvement in rimocidin production. In the 5-L fermentor, the maximum rimocidin production achieved by S. rimosus M527-GR7 was 25.36% and 62.89% greater than those achieved by S. rimosus M527-G37 and the wild-type strain S. rimosus M527, respectively. Moreover, in the mutants S. rimosus M527-G37 and S. rimosus M527-GR7 the transcriptional levels of ten genes (rimAsr to rimKsr) located in the gene cluster involved in rimocidin biosynthesis were all higher than those in the parental strain M527 to varying degrees. In addition, after expression of the single rimocidin biosynthetic genes in S. rimosus M527 a few recombinants showed an increase in rimocidin production. Expression of rimE led to the highest production.


Assuntos
Farmacorresistência Bacteriana , Microbiologia Industrial/métodos , Família Multigênica , Mutação , Streptomyces rimosus/metabolismo , Antibacterianos/metabolismo , Fermentação , Regulação Bacteriana da Expressão Gênica , Engenharia Genética , Macrolídeos/metabolismo , Polienos/metabolismo , Ribossomos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA