Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 36(40): 12077-12086, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-32960065

RESUMO

The mechanism behind the stability of organic nanoparticles prepared by liquid antisolvent (LAS) precipitation without a specific stabilizing agent is poorly understood. In this work, we propose that the organic solvent used in the LAS process rapidly forms a molecular stabilizing layer at the interface of the nanoparticles with the aqueous dispersion medium. To confirm this hypothesis, n-octadecyltrichlorosilane (OTS)-functionalized silicon wafers in contact with water-solvent mixtures were used as a flat model system mimicking the solid-liquid interface of the organic nanoparticles. We studied the equilibrium structure of the interface by X-ray reflectometry (XRR) for water-solvent mixtures (methanol, ethanol, 1-propanol, 2-propanol, acetone, and tetrahydrofuran). The formation of an organic solvent-rich layer at the solid-liquid interface was observed. The layer thickness increases with the organic solvent concentration and correlates with the polar and hydrogen bond fraction of Hansen solubility parameters. We developed a self-consistent adsorption model via complementing adsorption isotherms obtained from XRR data with molecular dynamics simulations.

2.
J Pharm Sci ; 113(3): 785-790, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38070777

RESUMO

The molecular mechanisms of mesoporous silica nanomaterial (MSN) loading by gemcitabine and ibuprofen molecules, respectively, are elucidated as functions of pore geometry. Based on a small series of MSN archetypes, we use molecular dynamics simulations to systematically explore molecule-by-molecule loading of the carrier material. Apart from predicting the maximum active pharmaceutical ingredient (API) loading capacity, more detailed statistical analysis of the incorporation energy reveals dedicated profiles stemming from the interplay of guest-MSN salt-bridges/hydrogen bonding in concave and convex domains of the silica surfaces - which outcompete interactions among the drug molecules. Only after full coverage of the silica surface, we find secondary layer growth stabilized by guest-guest interactions exclusively. Based on molecular models, we thus outline a two-step type profile for drug release from MSN networks. Subject to the MSN structure, we find 50-75 % of the API within amorphous domains in the inner regions of the pores - from which drug release is provided at constant dissociation energy. In turn, the remaining 50-25 % of drug molecules are drastically hindered from dissociation.


Assuntos
Ibuprofeno , Nanopartículas , Ibuprofeno/química , Gencitabina , Ligação de Hidrogênio , Dióxido de Silício/química , Liberação Controlada de Fármacos , Cloreto de Sódio , Porosidade , Portadores de Fármacos/química , Nanopartículas/química
3.
ACS Omega ; 7(19): 16371-16379, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35601303

RESUMO

We explore the role of molten nitrate interfaces on MgO surface treatment for improving the reversibility of thermochemical energy storage via sorption and desorption of water or CO2. Our molecular dynamics simulations focus on melts of LiNO3, NaNO3, KNO3, and the triple eutectic mixture Li0.38Na0.18K0.44NO3 on the surface of MgO to provide atomic scale details of adsorbed layers and to rationalize interface energies. On this basis, a thermodynamic model is elaborated to characterize the effect of nitrate melts on the dehydration of Mg(OH)2 and to quantitatively explain the difference in dehydration temperatures of intact and LiNO3-doped Mg(OH)2.

4.
J Pharm Sci ; 109(6): 2018-2023, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32173324

RESUMO

We present atomic scale models of differently shaped silica surfaces loaded by gemcitabine and ibuprofene molecules. Despite the dissimilar nature of the drug molecules, their association to silica carriers shows quite similar characteristics. We identify a well-defined contact layer that is stabilized by silica-molecule salt-bridges/hydrogen bonding in parallel to interactions among the drug molecules. Additional loading of the carriers leads to rough films with dynamically evolving asperities rather than layer-by-layer ordering. To elucidate the role of differently shaped silica surfaces, we compared planar slab models and spherical nanoparticles as 2 limiting cases. Despite the strong difference in the curvature of the silica surfaces, our molecular dynamics simulations show only small changes of the unloading characteristics. This suggests that the design of different pore shapes in mesoporous silica-based drug carriers mainly affects the migration kinetics rather than the energetics of drug loading and release.


Assuntos
Nanopartículas , Dióxido de Silício , Portadores de Fármacos , Liberação Controlada de Fármacos , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Porosidade
5.
PLoS One ; 14(3): e0212731, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30845145

RESUMO

The agglomeration of silica nanoparticles in aqueous solution is investigated from molecular simulations. Mimicking destabilization of colloidal solutions by full removal of protective moieties or surface charge, association of SiO2/Si(OH)4 core/shell particles leads to rapid proton transfer reactions that account for local silanole → silica ripening reactions. Yet, such virtually barrier-less binding is only observed within a limited contact zone. Agglomeration hence leads to the formation of oligomers of nanoparticles, whilst full merging into a compact precipitate is hampered by the need for extended structural reorganisation. Implementing sufficiently fast supply from colloidal solution, our simulations show the development of silica networks comprised of covalently bound, yet not fully merged nanoparticles. Within the oligomerized nanoparticle network, coordination numbers range from 2 to 5 -which is far below closest packing. Our simulations hence rationalize the formation of covalently bound network structures hosting extended pores. The resulting interfaces to the solvent show water immobilization only for the immediate contact layers, whilst the inner pores exhibit solvent mobility akin to bulk water.


Assuntos
Modelos Químicos , Nanopartículas/química , Dióxido de Silício/química , Coloides , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA