Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
1.
Proteomics ; 23(16): e2300172, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37148167

RESUMO

Therapeutic monoclonal antibodies (mAb) production relies on multiple purification steps before release as a drug product (DP). A few host cell proteins (HCPs) may co-purify with the mAb. Their monitoring is crucial due to the considerable risk they represent for mAb stability, integrity, and efficacy and their potential immunogenicity. Enzyme-linked immunosorbent assays (ELISA) commonly used for global HCP monitoring present limitations in terms of identification and quantification of individual HCPs. Therefore, liquid chromatography tandem mass spectrometry (LC-MS/MS) has emerged as a promising alternative. Challenging DP samples show an extreme dynamic range requiring high performing methods to detect and reliably quantify trace-level HCPs. Here, we investigated the benefits of adding high-field asymmetric ion mobility spectrometry (FAIMS) separation and gas phase fractionation (GPF) prior to data independent acquisition (DIA). FAIMS LC-MS/MS analysis allowed the identification of 221 HCPs among which 158 were reliably quantified for a global amount of 880 ng/mg of NIST mAb Reference Material. Our methods have also been successfully applied to two FDA/EMA approved DPs and allowed digging deeper into the HCP landscape with the identification and quantification of a few tens of HCPs with sensitivity down to the sub-ng/mg of mAb level.


Assuntos
Espectrometria de Mobilidade Iônica , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Fluxo de Trabalho , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo
2.
Anal Chem ; 95(8): 4162-4171, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36780376

RESUMO

Monoclonal antibodies (mAbs) currently represent the main class of therapeutic proteins. mAbs approved by regulatory agencies are selected from IgG1, IgG2, and IgG4 subclasses, which possess different interchain disulfide connectivities. Ion mobility coupled to native mass spectrometry (IM-MS) has emerged as a valuable approach to tackle the challenging characterization of mAbs' higher order structures. However, due to the limited resolution of first-generation IM-MS instruments, subtle conformational differences on large proteins have long been hard to capture. Recent technological developments have aimed at increasing available IM resolving powers and acquisition mode capabilities, namely, through the release of high-resolution IM-MS (HR-IM-MS) instruments, like cyclic IM-MS (cIM-MS). Here, we outline the advantages and drawbacks of cIM-MS for better conformational characterization of intact mAbs (∼150 kDa) in native conditions compared to first-generation instruments. We first assessed the extent to which multipass cIM-MS experiments could improve the separation of mAbs' conformers. These initial results evidenced some limitations of HR-IM-MS for large native biomolecules which possess rich conformational landscapes that remain challenging to decipher even with higher IM resolving powers. Conversely, for collision-induced unfolding (CIU) approaches, higher resolution proved to be particularly useful (i) to reveal new unfolding states and (ii) to enhance the separation of coexisting activated states, thus allowing one to apprehend gas-phase CIU behaviors of mAbs directly at the intact level. Altogether, this study offers a first panoramic overview of the capabilities of cIM-MS for therapeutic mAbs, paving the way for more widespread HR-IM-MS/CIU characterization of mAb-derived formats.


Assuntos
Anticorpos Monoclonais , Espectrometria de Massas em Tandem , Anticorpos Monoclonais/química , Conformação Molecular , Imunoglobulina G/química , Dissulfetos
3.
Molecules ; 28(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36985827

RESUMO

In the quest to market increasingly safer and more potent biotherapeutic proteins, the concept of the multi-attribute method (MAM) has emerged from biopharmaceutical companies to boost the quality-by-design process development. MAM strategies rely on state-of-the-art analytical workflows based on liquid chromatography coupled to mass spectrometry (LC-MS) to identify and quantify a selected series of critical quality attributes (CQA) in a single assay. Here, we aimed at evaluating the repeatability and robustness of a benchtop LC-MS platform along with bioinformatics data treatment pipelines for peptide mapping-based MAM studies using standardized LC-MS methods, with the objective to benchmark MAM methods across laboratories, taking nivolumab as a case study. Our results evidence strong interlaboratory consistency across LC-MS platforms for all CQAs (i.e., deamidation, oxidation, lysine clipping and glycosylation). In addition, our work uniquely highlights the crucial role of bioinformatics postprocessing in MAM studies, especially for low-abundant species quantification. Altogether, we believe that MAM has fostered the development of routine, robust, easy-to-use LC-MS platforms for high-throughput determination of major CQAs in a regulated environment.


Assuntos
Anticorpos Monoclonais , Anticorpos Monoclonais/química , Espectrometria de Massas/métodos , Cromatografia Líquida/métodos , Glicosilação , Mapeamento de Peptídeos/métodos
4.
Mol Cell Proteomics ; 19(1): 11-30, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31591262

RESUMO

Glycosylation is a topic of intense current interest in the development of biopharmaceuticals because it is related to drug safety and efficacy. This work describes results of an interlaboratory study on the glycosylation of the Primary Sample (PS) of NISTmAb, a monoclonal antibody reference material. Seventy-six laboratories from industry, university, research, government, and hospital sectors in Europe, North America, Asia, and Australia submitted a total of 103 reports on glycan distributions. The principal objective of this study was to report and compare results for the full range of analytical methods presently used in the glycosylation analysis of mAbs. Therefore, participation was unrestricted, with laboratories choosing their own measurement techniques. Protein glycosylation was determined in various ways, including at the level of intact mAb, protein fragments, glycopeptides, or released glycans, using a wide variety of methods for derivatization, separation, identification, and quantification. Consequently, the diversity of results was enormous, with the number of glycan compositions identified by each laboratory ranging from 4 to 48. In total, one hundred sixteen glycan compositions were reported, of which 57 compositions could be assigned consensus abundance values. These consensus medians provide community-derived values for NISTmAb PS. Agreement with the consensus medians did not depend on the specific method or laboratory type. The study provides a view of the current state-of-the-art for biologic glycosylation measurement and suggests a clear need for harmonization of glycosylation analysis methods.


Assuntos
Anticorpos Monoclonais/química , Produtos Biológicos , Biofarmácia/métodos , Anticorpos Monoclonais/metabolismo , Glicômica/métodos , Glicopeptídeos/metabolismo , Glicosilação , Humanos , Laboratórios , Polissacarídeos/metabolismo , Processamento de Proteína Pós-Traducional , Proteômica/métodos
5.
Chimia (Aarau) ; 76(1-2): 114-126, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38069757

RESUMO

Monoclonal antibodies (mAbs) are protein biotherapeutics with a proven efficacy toward fighting life-threatening diseases. Their exceptional healing potential drives the annual increase in the number of novel mAbs and other antibody-like molecules entering clinical trials and the number of approved mAb-based drugs. Mass spectrometry (MS) offers high selectivity and specificity for the potentially unambiguous identification and comprehensive structural characterization of proteins, including at the proteoform level. It is thus not surprising that MS-based approaches are playing a central role in the biopharma laboratories, complementing and advancing traditional biotherapeutics characterization workflows. A combination of MS approaches is required to comprehensively characterize mAbs' structures: the commonly employed bottom-up MS approaches are efficiently complemented with mass measurements at the intact and subunit (middle-up) levels, together with product ion analysis following gas-phase fragmentation of precursor ions performed at the intact (top-down) and subunit (middle-down) levels. Here we overview our group's contribution to increasing the efficiency of these approaches and the development of the novel strategies over the past decade. Our particular focus has been on the top-down and middle-down MS methods that utilize electron transfer dissociation (ETD) for gas-phase protein ion fragmentation. Several approaches pioneered by our group, particularly an ETD-based middle-down approach, constitute a part of commercial software solutions for the mAb's characterization workflows.

6.
J Proteome Res ; 20(1): 923-931, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33016074

RESUMO

Host cell proteins (HCPs) are a major class of bioprocess-related impurities generated by the host organism and are generally present at low levels in purified biopharmaceutical products. The monitoring of these impurities is identified as an important critical quality attribute of monoclonal antibody (mAb) formulations not only due to the potential risk for the product stability and efficacy but also concerns linked to the immunogenicity of some of them. While overall HCP levels are usually monitored by enzyme-linked immunosorbent assay (ELISA), mass spectrometry (MS)-based approaches have been emerging as powerful and promising alternatives providing qualitative and quantitative information. However, a major challenge for liquid chromatography (LC)-MS-based methods is to deal with the wide dynamic range of drug products and the extreme sensitivity required to detect trace-level HCPs. In this study, we developed powerful and reproducible MS-based analytical workflows coupling optimized and efficient sample preparations, the library-free data-independent acquisition (DIA) method, and stringent validation criteria. The performances of several preparation protocols and DIA versus classical data-dependent acquisition (DDA) were evaluated using a series of four commercially available drug products. Depending on the selected protocols, the user has access to different information: on the one hand, a deep profiling of tens of identified HCPs and on the other hand, accurate and reproducible (coefficients of variation (CVs) < 12%) quantification of major HCPs. Overall, a final global HCP amount of a few tens of ng/mg mAb in these mAb samples was measured, while reaching a sensitivity down to the sub-ng/mg mAb level. Thus, this straightforward and robust approach can be intended as a routine quality control for any drug product analysis.


Assuntos
Anticorpos Monoclonais , Preparações Farmacêuticas , Animais , Células CHO , Cromatografia Líquida , Cricetinae , Cricetulus , Ensaio de Imunoadsorção Enzimática , Espectrometria de Massas
7.
Anal Chem ; 93(3): 1277-1284, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33332095

RESUMO

Due to the particular elution mechanism observed with large solutes (e.g., proteins) in liquid chromatography, column length has less impact in controlling their retention compared to small solutes. Moreover, long columns-in theory-just broaden the peaks of large solutes since a great part of the column only acts as void (extra) volume. Such a theory suggests that using very short columns should result in comparable separation quality versus using long columns and make it possible to perform faster (high-throughput) analyses. Therefore, the elution behavior of various therapeutic monoclonal antibodies and their fragments (25-150 kDa) has been investigated using modern instrumentation and column formats. The possibilities offered by narrow-bore columns packed with state-of-the-art 2.7 µm superficially porous particles with 5, 50, 100, and 150 mm lengths have been compared. In particular, the impact of gradient steepness and column length on separation efficiency was evaluated. Using 5 mm × 2.1 mm columns, it has become possible to separate antibody fragments and antibody-drug conjugate species in less than 30 s. Such fast methods can be very useful for high-throughput screening purposes in biopharmaceutical industries.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Imunoconjugados/isolamento & purificação , Anticorpos Monoclonais/química , Cromatografia Líquida de Alta Pressão , Humanos , Imunoconjugados/química , Software
8.
Anal Chem ; 93(3): 1285-1293, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33305942

RESUMO

In the first part of the series, it was demonstrated that very fast (<30 s) separations of therapeutic protein species are feasible using ultra-short (5 × 2.1 mm) columns. In the second part, our purpose was to find the appropriate column length; therefore, a systematic study was performed using various custom-made prototype reversed-phase liquid chromatography (RPLC) columns ranging from 2 to 50 mm lengths. It was found that on a low dispersion ultrahigh-pressure liquid chromatography instrument, columns between 10 and 20 mm were most effective when made with 2.1 mm i.d. tubing. However, with the same LC instrument, 3 mm i.d. columns as short as ∼5 to 10 mm could be effectively used. In both cases, it has been found to be best to keep injection volumes below 0.6 µL, which presents a potential limit to further decreasing column length, given the current capabilities of autosampler instrumentation. The additional volume of the column hardware outside of the packed bed (extra-bed volume) of very small columns is also a limiting factor to decrease the column length. For columns shorter than 10 mm, columns' extra-bed volume was seen to make considerable contributions to band broadening. However, the use of ultra-short columns seemed to be a very useful approach for RPLC of large proteins (>25 kDa) and could also work well for ∼12 kDa as the lowest limit of molecular mass. In summary, a renewed interest in the use of ultra-short columns is warranted, and additional method development will be to the benefit of the biopharmaceutical industry as there is an ever-increasing demand for faster, yet accurate assays (e.g., high-throughput screening) of proteins.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Citocromos c/isolamento & purificação , Anticorpos Monoclonais/química , Cromatografia Líquida , Cromatografia de Fase Reversa , Citocromos c/química , Humanos , Software
9.
J Sep Sci ; 44(1): 35-62, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32914936

RESUMO

Fc-Fusion proteins represent a successful class of biopharmaceutical products, with already 13 drugs approved in the European Union and United States as well as three biosimilar versions of etanercept. Fc-Fusion products combine tailored pharmacological properties of biological ligands, together with multiple functions of the fragment crystallizable domain of immunoglobulins. There is a great diversity in terms of possible biological ligands, including the extracellular domains of natural receptors, functionally active peptides, recombinant enzymes, and genetically engineered binding constructs acting as cytokine traps. Due to their highly diverse structures, the analytical characterization of Fc-Fusion proteins is far more complex than that of monoclonal antibodies and requires the use and development of additional product-specific methods over conventional generic/platform methods. This can be explained, for example, by the presence of numerous sialic acids, leading to high diversity in terms of isoelectric points and complex glycosylation profiles including multiple N- and O-linked glycosylation sites. In this review, we highlight the wide range of analytical strategies used to fully characterize Fc-fusion proteins. We also present case studies on the structural assessment of all commercially available Fc-fusion proteins, based on the features and critical quality attributes of their ligand-binding domains.


Assuntos
Fragmentos Fc das Imunoglobulinas/análise , Proteínas Recombinantes de Fusão/análise , Animais , Humanos
10.
Anal Chem ; 92(19): 12900-12908, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32886492

RESUMO

Ion mobility (IM)-based collision-induced unfolding (CIU) has gained increasing attention to probe gas-phase unfolding of proteins and their noncovalent complexes, notably for biotherapeutics. CIU detects subtle conformational changes of proteins and emerges as an attractive alternative to circumvent poor IM resolution. However, CIU still lacks in automation for buffer exchange and data acquisition, precluding its wide adoption. We present here an automated workflow for CIU experiments, from sample preparation to data interpretation using online size exclusion chromatography coupled to native IM mass spectrometry (SEC-CIU). Online automated SEC-CIU experiments offer several benefits over nanoESI-CIU, among which are (i) improved and fast desalting compared to manual buffer exchange used for classical CIU experiments; (ii) drastic reduction of the overall data collection time process; and (iii) maintaining the number of unfolding transitions. We then evaluate the potential of SEC-CIU to distinguish monoclonal antibody (mAb) subclasses, illustrating the efficiency of our method for rapid mAb subclass identification at both intact and middle levels. Finally, we demonstrate that CIU data acquisition time can be further reduced either by setting up a scheduled CIU method relying on diagnostic trap collision voltages or by implementing mAb-multiplexed SEC-CIU analyses to maximize information content in a single experiment. Altogether, our results confirm the suitability of SEC-CIU to automate CIU experiments, particularly for the fast characterization of next-generation mAb-based products.


Assuntos
Anticorpos Monoclonais/análise , Cromatografia em Gel , Espectrometria de Mobilidade Iônica , Espectrometria de Massas , Conformação Proteica , Desdobramento de Proteína
11.
Anal Chem ; 92(13): 8827-8835, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32453570

RESUMO

Most of the current FDA and EMA approved therapeutic monoclonal antibodies (mAbs) are based on humanized or human IgG1, 2, or 4 subclasses and engineered variants. On the structural side, these subclasses are characterized by specific interchain disulfide bridge connections. Different analytical techniques have been reported to assess intact IgGs subclasses, with recently special interest in native ion mobility (IM) and collision induced unfolding (CIU) mass spectrometry (MS). However, these two techniques exhibit significant limitations to differentiate mAb subclasses at the intact level. In the present work, we aimed at developing a unique IM-MS-based approach for the characterization of mAb subclasses at the middle level. Upon IdeS-digestion, the unfolding patterns of the F(ab')2 and Fc domains were simultaneously analyzed in a single run to provide deeper structural insights of the mAb scaffold. The unfolding patterns associated with the F(ab')2 domains are completely different in terms of unfolding energies and number of transitions. Thereby, F(ab')2 regions are the diagnostic domain to provide specific unfolding signatures to differentiate IgG subclasses and provide more confident subclass categorization than CIU on intact mAbs. In addition, the potential of middle-level CIU was evaluated through the characterization of eculizumab, a hybrid therapeutic IgG2/4 mAb. The unfolding signatures of both domains were allowed to corroborate, within a single run, the hybrid nature of eculizumab as well as specific subclass domain assignments to the F(ab')2 and Fc regions. Altogether, our results confirm the suitability of middle-level CIU of F(ab')2 domains for subclass categorization of canonical and more complex new generation engineered antibodies and related products.


Assuntos
Anticorpos Monoclonais/análise , Imunoglobulina G/análise , Espectrometria de Massas/métodos , Adalimumab/análise , Adalimumab/química , Adalimumab/classificação , Anticorpos Monoclonais/química , Anticorpos Monoclonais/classificação , Anticorpos Monoclonais Humanizados/análise , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/classificação , Cromatografia Líquida de Alta Pressão , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/química , Imunoglobulina G/química , Imunoglobulina G/classificação , Espectrometria de Mobilidade Iônica , Desdobramento de Proteína
12.
Anal Chem ; 92(12): 8170-8177, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32407621

RESUMO

Conventional antibody-drug conjugate (ADC) manufacturing methods are based on the nonselective bioconjugation of cytotoxic drugs to lysine and cysteine residues. This results in highly heterogeneous mixtures of different drug-antibody ratios (DAR) that can significantly affect the safety and efficacy of the ADC product. Recently, an innovative procedure named GlyCLICK was suggested, consisting of a two-step enzymatic procedure to transform Fc-glycans present on IgG mAbs into two site-specific anchor points for the conjugation of any alkyne-containing payload of choice. Here, we evaluated the conjugation process by comparing trastuzumab and trastuzumab conjugated with DM1, following the GlyCLICK procedure. Complementary reversed phase liquid chromatography (RPLC) and hydrophilic interaction chromatography (HILIC) coupled to high-resolution mass spectrometry (HRMS) were used to analyze the protein subunits (ca. 25-100 kDa) obtained after different levels of enzymatic digestion and chemical reduction. Our results demonstrated that the hydrophobic character of the drug molecule allows to rapidly confirm the Fc-drug conjugation at the chromatographic level. Furthermore, the hyphenation to MS detection provided accurate mass information on the ADC subunits and facilitated the DAR determination of 2.0. Therefore, this work illustrates how middle-up analysis using LC/HRMS can provide accurate and complementary information on the critical quality attributes of these novel site-specific ADC products.


Assuntos
Anticorpos Monoclonais/química , Imunoconjugados/análise , Polissacarídeos/química , Cromatografia Líquida , Espectrometria de Massas , Conformação Molecular
13.
Anal Chem ; 91(20): 12954-12961, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31514494

RESUMO

Reversed phase liquid chromatography (RPLC) is a widely used technique for the analytical characterization of proteins biopharmaceuticals, due to its inherent compatibility with mass spectrometry (MS). However, this chromatographic mode suffers from limited selectivity when analyzing large molecules. Due to the on/off mechanism observed with large solutes in RPLC (S values were higher than 100 for intact proteins), we have developed a new analytical strategy based on the use of multi-isocratic elution mode, to achieve arbitrary selectivity for protein variants. In this work, it has been demonstrated that the combination of multi-isocratic steps and very short steep gradient segments at solute elution allows one to set the selectivity as desired, while maintaining sharp peaks due to significant band compression effects. The strategy was successfully applied to the analysis of intact and subunits of monoclonal antibodies (mAbs) as well as antibody-drug conjugates (ADCs), illustrating the possibility to achieve a uniform peak distribution (equidistant band spacing) and much higher resolution than in the case of common linear, multilinear, or nonlinear gradients.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Cromatografia de Fase Reversa/métodos , Imunoconjugados/isolamento & purificação , Espectrometria de Massas/métodos , Humanos , Estudo de Prova de Conceito
14.
Anal Chem ; 91(1): 873-880, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30512936

RESUMO

Etanercept is a recombinant Fc fusion protein widely used to treat rheumatic diseases. This protein is highly glycosylated and contains numerous O- and N-glycosylation sites. Since glycosylation is recognized as an important critical quality attribute (CQA) that can affect immunogenicity, solubility, and stability of Fc fusion proteins, it should be thoroughly characterized. In this work, hydrophilic interaction chromatography (HILIC) was combined with high-resolution mass spectrometry (HRMS) by using a quadrupole time-of flight mass spectrometer to assess glycosylation of etanercept at the middle-up level of analysis (fragments of ca. 25-30 kDa). In addition, a combination of different enzymatic digestion procedures (i.e., glycosidase, sialidase, and protease) was systematically employed to facilitate spectra deconvolution. With the developed procedure, the main post-translational modifications (PTMs) of etanercept were assessed, and a global overview of the subunit-specific distribution of the glycosylation pattern was obtained at a middle-up level of analysis.


Assuntos
Cromatografia/métodos , Etanercepte/química , Espectrometria de Massas/métodos , Proteínas de Bactérias/química , Glicosilação , Interações Hidrofóbicas e Hidrofílicas , Neuraminidase/química , Peptídeo Hidrolases/química , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/química , Streptococcus pyogenes/enzimologia
15.
Anal Chem ; 91(3): 2079-2085, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30571088

RESUMO

The emergence of complex protein therapeutics in general and monoclonal antibodies (mAbs) in particular have stimulated analytical chemists to develop new methods and strategies for their structural characterization. Mass spectrometry plays a key role in providing information on the primary amino acid sequence, post-translational modifications, and other structure characteristics that must be monitored during the manufacturing process and subsequent quality control assessment. In this study, we present a novel method that allows structural characterization of mAbs based on MALDI in-source decay (ISD) fragmentation, coupled with Fourier transform ion cyclotron resonance (FT-ICR) MS. The method benefits from higher resolution of absorption mode FT mass spectra, compared to magnitude mode, which enables simultaneous identification of ISD fragments from both the heavy and light chains with a higher confidence in a wide mass range up to m/ z 13 500. This method was applied to two standard mAbs, namely NIST mAb and trastuzumab, in preparation for method application in an interlaboratory study on mAbs structural analysis coordinated by the Consortium for Top-Down Proteomics. Extensive sequence coverage was obtained from the middle-down analysis (IdeS- and GingisKHAN-digested mAbs) that complemented the top-down analysis of intact mAbs. In addition, MALDI FT-ICR MS of IdeS-digested mAbs allowed isotopic-level profiling of proteoforms with regard to heavy chain N-glycosylation.


Assuntos
Anticorpos Monoclonais/análise , Análise de Fourier , Conformação Proteica , Processamento de Proteína Pós-Traducional , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
16.
Expert Rev Proteomics ; 16(4): 337-362, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30706723

RESUMO

INTRODUCTION: The development and optimization of antibody drug conjugates (ADCs) rely on improving their analytical and bioanalytical characterization, by assessing critical quality attributes (CQAs). Among the CQAs, the glycoprofile, drug load distribution (DLD), the amount of unconjugated antibody (D0), the average drug-to-antibody ratio (DAR), the drug conjugation sites and the residual drug-linker and related product proportions (SMDs) in addition to high and low molecular weight species (H/LMWS), and charge variants are the most important ones. Areas covered: The analytical and structural toolbox for the characterization of 1st, 2d and 3d generation ADCs was significantly extended in the last 3 years. Here, we reviewed state-of-the-art techniques, such as liquid chromatography, high resolution native and ion mobility mass spectrometry, multidimensional liquid chromatography and capillary electrophoresis hyphenated to mass spectrometry, reported mainly since 2016. Expert commentary: These emerging techniques allow a deep insight into important CQAs that are related to ADC Chemistry Manufacturing and Control (CMC) as well as an improved understanding of in vitro and in vivo ADC biotransformations. This knowledge and the development of quantitative bioanalytical assays will continue to contribute to early-developability assessment for the optimization of all the ADC components (i.e. antibody, drug, and linker) and help to bring next-generation ADCs into late clinical development and to the market.


Assuntos
Imunoconjugados/análise , Imunoconjugados/química , Sequência de Aminoácidos , Cromatografia , Eletroforese , Humanos , Interações Hidrofóbicas e Hidrofílicas , Espectrometria de Massas
17.
Anal Chem ; 90(15): 8865-8872, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29956914

RESUMO

Although the majority of FDA and EMA approved therapeutic monoclonal antibodies (mAbs) are IgG1, the number of IgG4-based formats reaching the market is increasing. IgG4 differs from other mAb isotypes by its specificity to form half mAbs that recombine into bispecific (bsAbs) molecules, through a process termed fab-arm exchange (FAE). We report here the complementarity of native mass spectrometry (MS), ion mobility (IM), and collision-induced unfolding (CIU) experiments for the structural characterization of members of the IgG4 subfamily (wild-type (wt), hinge-stabilized (hs, S228P mutation), and the resulting bsAb IgG4s). Native MS allows confirming/invalidating the occurrence of FAE as a function of these different types of IgG4. While IM-MS was unable to distinguish iso-cross-section IgG4 species, CIU experiments provide unique specific structural signatures of each individual IgG4 based on their specific unfolding pathways. Common CIU features of IgG4 formats include the observation of three conformational states and two transitions. In addition, CIU experiments demonstrated that S228P mutation stabilizes gas phase conformations of hsIgG4, in agreement with increased stability related to more rigid hinge regions. CIU patterns also appear to be more informative than IM-MS for bsAb structural characterization, unfolding signature of the bsAb being intermediate to the ones of the former parent wt-IgG4s, highlighting that bsAb CIU profiles keep the memory of their origins. Altogether, our results demonstrate that CIU patterns can serve as mAb specific structural signatures and are mature to be included in MS-based analytical workflows for conformational/structural characterization of mAb formats in early development phases and for multiple attribute monitoring.


Assuntos
Anticorpos Monoclonais Humanizados/química , Imunoglobulina G/química , Espectrometria de Mobilidade Iônica/métodos , Natalizumab/química , Nivolumabe/química , Anticorpos Monoclonais Humanizados/genética , Humanos , Imunoglobulina G/genética , Espectrometria de Massas , Modelos Moleculares , Natalizumab/genética , Nivolumabe/genética , Mutação Puntual , Conformação Proteica , Estabilidade Proteica , Desdobramento de Proteína
18.
Anal Chem ; 90(9): 5923-5929, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29614857

RESUMO

Monoclonal antibodies (mAb) and related molecules are being developed at a remarkable pace as new therapeutics for the treatment of diseases ranging from cancer to inflammatory disorders. However, characterization of these molecules at all stages of development and manufacturing presents tremendous challenges to existing analytical technologies because of their large size (ca. 150 kDa) and inherent heterogeneity resulting from complex glycosylation patterns and other post-translational modifications. Multidimensional liquid chromatography is emerging as a powerful platform technology that can be used to both improve analysis speed for these molecules by combining existing one-dimensional separations into a single method (e.g., Protein A affinity separation and size-exclusion chromatography) and increasing the resolving power of separations by moving from one dimension of separation to two. In the current study, we have demonstrated the ability to combine hydrophilic interaction (HILIC) and RP separations in an online comprehensive 2D separation coupled with high resolution MS detection (HILIC × RP-HRMS). We find that active solvent modulation (ASM) is critical for coupling these two separation modes, because it mitigates the otherwise serious negative impact of the acetonitrile-rich HILIC mobile phase on the second dimension RP separation. The chromatograms obtained from these HILIC × RP-HRMS separations of mAbs at the subunit level reveal the extent of glycosylation on the Fc/2 and Fd subunits in analysis times on the order of 2 h. In comparison to previous CEX × RP separations of the same molecules, we find that chromatograms from the HILIC × RP separations are richer and reveal separation of some glycoforms that coelute in the CEX × RP separations.


Assuntos
Anticorpos Monoclonais/análise , Anticorpos Monoclonais Humanizados , Cromatografia Líquida , Cromatografia de Fase Reversa , Interações Hidrofóbicas e Hidrofílicas , Espectrometria de Massas
19.
Anal Chem ; 90(23): 13929-13937, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30371058

RESUMO

The determination of size variants is a major critical quality attribute of a therapeutic monoclonal antibody (mAb that may affect the drug product safety, potency, and efficacy. Size variant characterization often relies on size-exclusion chromatography (SEC), which could be hampered by difficult identification of peaks. On the other hand, mass spectrometry (MS)-based techniques performed in nondenaturing conditions have proven to be valuable for mAb-related compound characterization. On the basis of the observation that limited SEC performance was observed in nondenaturing MS compatible ammonium acetate buffer compared with classical phosphate salts, a multidimensional analytical approach was proposed. It combines comprehensive online two-dimensional chromatography (SEC×SEC), with ion mobility and mass spectrometry (IM-MS) in nondenaturing conditions for the characterization of a variety of mAbs. We first exemplify the versatility of our approach for simultaneous detection, identification, and quantitation of adalimumab size variants. Benefits of the SEC×SEC-native IM×MS were further highlighted on forced degraded pembrolizumab and bevacizumab samples, for which the 4D setup was mandatory to obtain an extensive and unambiguous identification, and accurate quantitation of unexpected high/low molecular weight species (HMWS and LMWS). In this specific context, monomeric conformers were detected by IM-MS as HMWS or LMWS. Altogether, our results emphasize the power of comprehensive 2D LC×LC setups hyphenated to IM×MS in nondenaturing conditions with unprecedented performance including: (i) maintaining optimal SEC performance (under classical nonvolatile salt conditions), (ii) performing online native MS identification, and (iii) providing IM-MS conformational characterization of all separated size variants.


Assuntos
Anticorpos Monoclonais Humanizados/análise , Anticorpos Monoclonais/análise , Antineoplásicos Imunológicos/análise , Bevacizumab/análise , Cromatografia em Gel , Espectrometria de Massas
20.
Anal Chem ; 90(21): 12527-12535, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30252447

RESUMO

Pairing light and heavy chains in monoclonal antibodies (mAbs) using top-down (TD) or middle-down (MD) mass spectrometry (MS) may complement the sequence information on single chains provided by high-throughput genomic sequencing and bottom-up proteomics, favoring the rational selection of drug candidates. The 50 kDa F(ab) subunits of mAbs are the smallest structural units that contain the required information on chain pairing. These subunits can be enzymatically produced from whole mAbs and interrogated in their intact form by TD/MD MS approaches. However, the high structural complexity of F(ab) subunits requires increased sensitivity of the modern TD/MD MS for a comprehensive structural analysis. To address this and similar challenges, we developed and applied a multiplexed TD/MD MS workflow based on spectral averaging of tandem mass spectra (MS/MS) across multiple liquid chromatography (LC)-MS/MS runs acquired in reduced or full profile mode using an Orbitrap Fourier transform mass spectrometer (FTMS). We first benchmark the workflow using myoglobin as a reference protein, and then validate it for the analysis of the 50 kDa F(ab) subunit of a therapeutic mAb, trastuzumab. Obtained results confirm the envisioned benefits in terms of increased signal-to-noise ratio of product ions from utilizing multiple LC-MS/MS runs for TD/MD protein analysis using mass spectral averaging. The workflow performance is compared with the earlier introduced multiplexed TD/MD MS workflow based on transient averaging in Orbitrap FTMS. For the latter, we also report on enabling absorption mode FT processing and demonstrate its comparable performance to the enhanced FT (eFT) spectral representation.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Cadeias Pesadas de Imunoglobulinas/química , Cadeias Leves de Imunoglobulina/química , Espectrometria de Massas em Tandem/métodos , Trastuzumab/química , Animais , Cavalos , Estrutura Molecular , Mioglobina/química , Proteólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA