Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 378(2186): 20190599, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33100159

RESUMO

Conical metallic tapers represent an intriguing subclass of metallic nanostructures, as their plasmonic properties show interesting characteristics in strong correlation to their geometrical properties. This is important for possible applications such as in the field of scanning optical microscopy, as favourable plasmonic resonance behaviour can be tailored by optimizing structural parameters like surface roughness or opening angle. Here, we review our recent studies, where single-crystalline gold tapers were investigated experimentally by means of electron energy-loss and cathodoluminescence spectroscopy techniques inside electron microscopes, supported by theoretical finite-difference time-domain calculations. Through the study of tapers with various opening angles, the underlying resonance mechanisms are discussed. This article is part of a discussion meeting issue 'Dynamic in situ microscopy relating structure and function'.

2.
Opt Express ; 27(13): 18246-18261, 2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31252771

RESUMO

We propose an approach of steering the second harmonic (SH) emission from a single plasmonic structure, through local excitations of plasmon. The proposed idea is confirmed experimentally, by adjusting the incident beam position at the fundamental frequency, on a single plasmonic antenna. A significant directivity change ( ± 52°) for the SH emission is observed with submicrometer adjustment ( ± 250 nm) of the excitation beam position, over broadband SH frequencies. Providing a simple method of controlling the directivity of frequency-converted light, our approach paves the way to new design strategy for nonlinear optical devices with various nonlinear wavefronts.

3.
Nano Lett ; 16(10): 6137-6144, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27552231

RESUMO

We investigate different dynamic mechanisms, reflection and phase matching, of surface plasmons in a three-dimensional single-crystalline gold taper excited by relativistic electrons. Plasmonic modes of gold tapers with various opening angles from 5° to 47° are studied both experimentally and theoretically, by means of electron energy-loss spectroscopy and finite-difference time-domain numerical calculations, respectively. Distinct resonances along the taper shaft are observed in tapers independent of opening angles. We show that, despite their similarity, the origin of these resonances is different at different opening angles and results from a competition between two coexisting mechanisms. For gold tapers with large opening angles (above ∼20°), phase matching between the electron field and that of higher-order angular momentum modes of the taper is the dominant contribution to the electron energy-loss because of the increasing interaction length between electron and the taper near-field. In contrast, reflection from the taper apex dominates the EELS contrast in gold tapers with small opening angles (below ∼10°). For intermediate opening angles, a gradual transition of these two mechanisms was observed.

4.
Nano Lett ; 14(8): 4778-84, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25051422

RESUMO

Plasmonic nanoantennas are versatile tools for coherently controlling and directing light on the nanoscale. For these antennas, current fabrication techniques such as electron beam lithography (EBL) or focused ion beam (FIB) milling with Ga(+)-ions routinely achieve feature sizes in the 10 nm range. However, they suffer increasingly from inherent limitations when a precision of single nanometers down to atomic length scales is required, where exciting quantum mechanical effects are expected to affect the nanoantenna optics. Here, we demonstrate that a combined approach of Ga(+)-FIB and milling-based He(+)-ion lithography (HIL) for the fabrication of nanoantennas offers to readily overcome some of these limitations. Gold bowtie antennas with 6 nm gap size were fabricated with single-nanometer accuracy and high reproducibility. Using third harmonic (TH) spectroscopy, we find a substantial enhancement of the nonlinear emission intensity of single HIL-antennas compared to those produced by state-of-the-art gallium-based milling. Moreover, HIL-antennas show a vastly improved polarization contrast. This superior nonlinear performance of HIL-derived plasmonic structures is an excellent testimonial to the application of He(+)-ion beam milling for ultrahigh precision nanofabrication, which in turn can be viewed as a stepping stone to mastering quantum optical investigations in the near-field.

5.
Opt Express ; 21(22): 26564-77, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24216878

RESUMO

We describe and demonstrate the use of an adaptive wave front optimization scheme for enhancing the efficiency of adiabatic nanofocusing of surface plasmon polariton (SPP) waves along an ultrasharp conical gold taper. Adiabatic nanofocusing is an emerging and promising scheme for controlled focusing of far field light into nanometric volumes. It comprises three essential steps: SPP excitation by coupling far field light to an SPP waveguide, SPP propagation along the waveguide and adiabatic SPP nanofocusing towards a geometric singularity. For commonly used complex waveguide geometries, such as, e.g., conical metal tapers, a realistic modeling and efficiency optimization is challenging. Here, we use a deformable mirror to adaptively control the wave front of the incident far field light. We demonstrate an eight-fold enhancement in nanofocusing efficiency and analyze the shape of the resulting optimized wave front. The introduced wave front optimization scheme is of general interest for guiding and controlling light on the nanoscale.

6.
ACS Photonics ; 6(10): 2509-2516, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31656825

RESUMO

Three-dimensional plasmonic gold tapers are widely used structures in nano-optics for achieving imaging at the nanometer scale, enhanced spectroscopy, confined light sources, and ultrafast photoelectron emission. To understand their radiation properties further, especially in the proximity of the apex at the nanoscale, we employ cathodoluminescence spectroscopy with high spatial and energy resolution. The plasmon-induced radiation in the visible spectral range from three-dimensional gold tapers with opening angles of 13° and 47° is investigated under local electron excitation. We observe a much weaker radiation from the apex of the 13° taper than from that of the 47° taper. By means of finite-difference time-domain simulations we show that for small opening angles plasmon modes that are created at the apex are efficiently guided along the taper shaft. In contrast for tapers with larger opening angles, generated plasmon polaritons experience larger radiation damping. Interestingly, we find for both tapers that the most intense radiation comes from locations a few hundreds of nanometers behind the apexes, instead of exactly at the apexes. Our findings provide useful details for the design of plasmonic gold tapers as confined light sources or light absorbers.

7.
ACS Nano ; 9(7): 7641-8, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26115434

RESUMO

We investigate the optical modes in three-dimensional single-crystalline gold tapers by means of electron energy-loss spectroscopy. At the very proximity to the apex, a broad-band excitation at all photon energies from 0.75 to 2 eV, which is the onset for interband transitions, is detected. At large distances from the apex, though, we observe distinct resonances with energy dispersions roughly proportional to the inverse local radius. The nature of these phenomena is unraveled by finite difference time-domain simulations of the taper and an analytical treatment of the energy loss in fibers. Our calculations and the perfect agreement with our experimental results demonstrate the importance of phase-matching between electron field and radiative taper modes in mesoscopic structures. The local taper radius at the electron impact location determines the selective excitation of radiative modes with discrete angular momenta.

8.
Beilstein J Nanotechnol ; 4: 603-10, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24205454

RESUMO

We investigate the radiation patterns of sharp conical gold tapers, which were designed as adiabatic nanofocusing probes for scanning near-field optical microscopy (SNOM). Field calculations show that only the lowest order eigenmode of such a taper can reach the very apex and thus induce the generation of strongly enhanced near-field signals. Higher-order modes are coupled into the far field at finite distances from the apex. Here, we demonstrate experimentally how to distinguish and separate between the lowest and higher-order eigenmodes of such a metallic taper by filtering in the spatial frequency domain. Our approach has the potential to considerably improve the signal-to-background ratio in spectroscopic experiments at the nanoscale.

9.
ACS Chem Biol ; 7(6): 1006-14, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22409623

RESUMO

We report fluorescence lifetime and rotational anisotropy measurements of the fluorescent dye Alexa647 attached to the guanylate cyclase-activating protein 2 (GCAP2), an intracellular myristoylated calcium sensor protein operating in photoreceptor cells. By linking the dye to different protein regions critical for monitoring calcium-induced conformational changes, we could measure fluorescence lifetimes and rotational correlation times as a function of myristoylation, calcium, and position of the attached dye, while GCAP2 was still able to regulate guanylate cyclase in a Ca(2+)-sensitive manner. We observe distinct site-specific variations in the fluorescence dynamics when externally changing the protein conformation. A clear reduction in fluorescence lifetime suggests that in the calcium-free state a dye marker in amino acid position 131 senses a more hydrophobic protein environment than in position 111. Saturating GCAP2 with calcium increases the fluorescence lifetime and hence leads to larger exposure of position 111 to the solvent and at the same time to a movement of position 131 into a hydrophobic protein cleft. In addition, we find distinct, biexponential anisotropy decays reflecting the reorientational motion of the fluorophore dipole and the dye/protein complex, respectively. Our experimental data are well described by a "wobbling-in-a-cone" model and reveal that for dye markers in position 111 of the GCAP2 protein both addition of calcium and myristoylation results in a pronounced increase in orientational flexibility of the fluorophore. Our results provide evidence that the up-and-down movement of an α-helix that is situated between position 111 and 131 is a key feature of the dynamics of the protein-dye complex. Operation of this piston-like movement is triggered by the intracellular messenger calcium.


Assuntos
Cálcio/metabolismo , Carbocianinas/análise , Polarização de Fluorescência , Corantes Fluorescentes/análise , Proteínas Ativadoras de Guanilato Ciclase/metabolismo , Células Fotorreceptoras/metabolismo , Animais , Bovinos , Escherichia coli/genética , Polarização de Fluorescência/métodos , Expressão Gênica , Proteínas Ativadoras de Guanilato Ciclase/química , Proteínas Ativadoras de Guanilato Ciclase/genética , Proteínas Ativadoras de Guanilato Ciclase/isolamento & purificação , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Espectrometria de Fluorescência/métodos
10.
Biol Lett ; 4(6): 619-22, 2008 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-18765352

RESUMO

Many species of migratory birds migrate in a series of solitary nocturnal flights. Between flights, they stop to rest and refuel for the next segment of their journey. The mechanism controlling this behaviour has long remained elusive. Here, we show that wild-caught migratory redstarts (Phoenicurus phoenicurus) are consistent in their flight scheduling. An advanced videographic system enabled us to determine the precise timing of flight activity in redstarts caught at a northern European stopover site during their return trip from Africa. Birds were held captive for three days in the absence of photoperiodic cues (constant dim light) and under permanent food availability. Despite the absence of external temporal cues, birds showed clear bimodal activity patterns: intense nocturnal activity alternating with diurnal foraging and resting periods. The onset of their migratory activity coincided with the time of local sunset and was individually consistent on consecutive nights. The data demonstrate that night-migrating birds are driven by autonomous circadian clocks entrained by sunset cues. This timekeeping system is probably the key factor in the overall control of nocturnal songbird migration.


Assuntos
Migração Animal/fisiologia , Ritmo Circadiano , Voo Animal , Passeriformes/fisiologia , Animais , Fotoperíodo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA