Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Chem Phys ; 158(2): 020901, 2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36641395

RESUMO

Thermogalvanic cells convert waste heat directly to electric work. There is an abundance of waste heat in the world and thermogalvanic cells may be underused. We discuss theoretical tools that can help us understand and therefore improve on cell performance. One theory is able to describe all aspects of the energy conversion: nonequilibrium thermodynamics. We recommend to use the theory with operationally defined, independent variables, as others have done before. These describe well-defined experiments. Three invariance criteria serve as a basis for any description: of local electroneutrality, entropy production invariance, and emf's independence of the frame of reference. Alternative formalisms, using different sets of variables, start with ionic or neutral components. We show that the heat flux is not the same in the two formalisms and derive a new relationship between the heat fluxes. The heat flux enters the definition of the Peltier coefficient and is essential for the understanding of the Peltier heat at the electrode interfaces and of the Seebeck coefficient of the cell. The Soret effect can occur independently of any Seebeck effect, but the Seebeck effect will be affected by the presence of a Soret effect. Common misunderstandings are pointed out. Peltier coefficients are needed for the interpretation and design of experiments.


Assuntos
Eletricidade , Temperatura Alta , Termodinâmica , Entropia , Eletrodos
2.
Eur Phys J E Soft Matter ; 45(5): 41, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35503580

RESUMO

When a temperature difference is applied over a porous medium soaked with a fluid mixture, two effects may be observed, a component separation (the Ludwig-Soret effect, thermodiffusion) and a pressure difference due to thermo-osmosis. In this work, we have studied both effects using non-equilibrium thermodynamics and molecular dynamics. We have derived expressions for the two characteristic parameters, the Soret coefficient and the thermo-osmotic coefficient in terms of phenomenological transport coefficients, and we show how they are related. Numerical values for these coefficients were obtained for a two-component fluid in a solid matrix where both fluid and solid are Lennard-Jones/spline particles. We found that both effects depend strongly on the porosity of the medium and weakly on the interactions between the fluid components and the matrix. The Soret coefficient depends strongly on whether the fluid is sampled from inside the porous medium or from bulk phases outside, which must be considered in experimental measurements using packed columns. If we use a methane/decane mixture in bulk as an example, our results for the Soret coefficient give that a temperature difference of 10 K will separate the mixture to about 49.5/50.5 and give no pressure difference. In a reservoir with 30% porosity, the separation will be 49.8/50.2, whereas the pressure difference will be about 15 bar. Thermo-osmotic pressures with this order or magnitude have been observed in frost-heave experiments.

3.
J Chem Phys ; 155(24): 244504, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34972373

RESUMO

Small systems have higher surface area-to-volume ratios than macroscopic systems. The thermodynamics of small systems therefore deviates from the description of classical thermodynamics. One consequence of this is that properties of small systems can be dependent on the system's ensemble. By comparing the properties in grand canonical (open) and canonical (closed) systems, we investigate how a small number of particles can induce an ensemble dependence. Emphasis is placed on the insight that can be gained by investigating ideal gases. The ensemble equivalence of small ideal gas systems is investigated by deriving the properties analytically, while the ensemble equivalence of small systems with particles interacting via the Lennard-Jones or the Weeks-Chandler-Andersen potential is investigated through Monte Carlo simulations. For all the investigated small systems, we find clear differences between the properties in open and closed systems. For systems with interacting particles, the difference between the pressure contribution to the internal energy, and the difference between the chemical potential contribution to the internal energy, are both increasing with the number density. The difference in chemical potential is, with the exception of the density dependence, qualitatively described by the analytic formula derived for an ideal gas system. The difference in pressure, however, is not captured by the ideal gas model. For the difference between the properties in the open and closed systems, the response of increasing the particles' excluded volume is similar to the response of increasing the repulsive forces on the system walls. This indicates that the magnitude of the difference between the properties in open and closed systems is related to the restricted movement of the particles in the system. The work presented in this paper gives insight into the mechanisms behind ensemble in-equivalence in small systems, and illustrates how a simple statistical mechanical model, such as the ideal gas, can be a useful tool in these investigations.

4.
J Chem Phys ; 154(11): 114705, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33752349

RESUMO

A high battery temperature has been shown to be critical for lithium-ion batteries in terms of performance, degradation, and safety. Therefore, a precise knowledge of heat sources and sinks in the battery is essential. We have developed a thermal model for lithium-ion batteries, a model that includes terms not included before, namely, Peltier and Dufour heat effects. The model is derived using non-equilibrium thermodynamics for heterogeneous systems, the only theory which is able to describe in a systematic manner the coupling of heat, mass, and charge transport. The idea of this theory is to deal with surfaces as two-dimensional layers. All electrochemical processes in these layers are defined using excess variables, implying, for instance, that the surface has its own temperature. We show how the Peltier and Dufour heats affect a single cell and may produce an internal temperature rise of 8.5 K in a battery stack with 80 modules. The heat fluxes leaving the cell are also functions of these reversible heat effects. Most of the energy that is dissipated as heat occurs in the electrode surfaces and the electrolyte-filled separator. The analysis shows that better knowledge of experimental data on surface resistances, transport coefficients, and Dufour and Peltier heats is essential for further progress in thermal modeling of this important class of systems.

5.
Entropy (Basel) ; 24(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35052072

RESUMO

A thermodynamic description of porous media must handle the size- and shape-dependence of media properties, in particular on the nano-scale. Such dependencies are typically due to the presence of immiscible phases, contact areas and contact lines. We propose a way to obtain average densities suitable for integration on the course-grained scale, by applying Hill's thermodynamics of small systems to the subsystems of the medium. We argue that the average densities of the porous medium, when defined in a proper way, obey the Gibbs equation. All contributions are additive or weakly coupled. From the Gibbs equation and the balance equations, we then derive the entropy production in the standard way, for transport of multi-phase fluids in a non-deformable, porous medium exposed to differences in boundary pressures, temperatures, and chemical potentials. Linear relations between thermodynamic fluxes and forces follow for the control volume. Fluctuation-dissipation theorems are formulated for the first time, for the fluctuating contributions to fluxes in the porous medium. These give an added possibility for determination of the Onsager conductivity matrix for transport through porous media. Practical possibilities are discussed.

6.
Phys Chem Chem Phys ; 20(35): 22623-22628, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30131997

RESUMO

We critically readdress the definition of thermal boundary resistance at an interface between two semiconductors. By means of atomistic simulations we provide evidence that the widely used Kapitza formalism predicts thermal boundary resistance values in good agreement with the more rigorous Onsager non-equilibrium thermodynamics picture. The latter is, however, better suited to provide physical insight on interface thermal rectification phenomena. We identify the factors that determine the temperature profile across the interface and the source of interface thermal rectification. To this end we perform non-equilibrium molecular dynamics computational experiments on a Si-Ge system with a graded compositional interface of varying thickness, considering thermal bias of different sign.

7.
Entropy (Basel) ; 20(4)2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-33265341

RESUMO

We derive in a new way that the intensive properties of a fluid-fluid Gibbs interface are independent of the location of the dividing surface. When the system is out of global equilibrium, this finding is not trivial: In a one-component fluid, it can be used to obtain the interface temperature from the surface tension. In other words, the surface equation of state can serve as a thermometer for the liquid-vapor interface in a one-component fluid. In a multi-component fluid, one needs the surface tension and the relative adsorptions to obtain the interface temperature and chemical potentials. A consistent set of thermodynamic properties of multi-component surfaces are presented. They can be used to construct fluid-fluid boundary conditions during transport. These boundary conditions have a bearing on all thermodynamic modeling on transport related to phase transitions.

8.
Phys Chem Chem Phys ; 19(13): 9016-9027, 2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28304038

RESUMO

Small systems are known to deviate from the classical thermodynamic description, among other things due to their large surface area to volume ratio compared to corresponding big systems. As a consequence, extensive thermodynamic properties are no longer proportional to the volume, but are instead higher order functions of size and shape. We investigate such functions for second moments of probability distributions of fluctuating properties in the grand-canonical ensemble, focusing specifically on the volume and surface terms of Hadwiger's theorem, explained in Klain, Mathematika, 1995, 42, 329-339. We resolve the shape dependence of the surface term and show, using Hill's nanothermodynamics [Hill, J. Chem. Phys., 1962, 36, 3182], that the surface satisfies the thermodynamics of a flat surface as described by Gibbs [Gibbs, The Scientific Papers of J. Willard Gibbs, Volume 1, Thermodynamics, Ox Bow Press, Woodbridge, Connecticut, 1993]. The Small System Method (SSM), first derived by Schnell et al. [Schnell et al., J. Phys. Chem. B, 2011, 115, 10911], is extended and used to analyze simulation data on small systems of water. We simulate water as an example to illustrate the method, using TIP4P/2005 and other models, and compute the isothermal compressibility and thermodynamic factor. We are able to retrieve the experimental value of the bulk phase compressibility within 2%, and show that the compressibility of nanosized volumes increases by up to a factor of two as the number of molecules in the volume decreases. The value for a tetrahedron, cube, sphere, polygon, etc. can be predicted from the same scaling law, as long as second order effects (nook and corner effects) are negligible. Lastly, we propose a general formula for finite reservoir correction to fluctuations in subvolumes.

9.
Phys Chem Chem Phys ; 18(17): 12213-20, 2016 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-27079162

RESUMO

We investigate, using non-equilibrium molecular dynamics simulations and theory, the response of molecular fluids confined in slit pores under the influence of a thermal gradient and/or an applied force. The applied force which has the same functional form as a gravitational force induces an inhomogeneous density in the confined fluid, which results in a net orientation of the molecules with respect to the direction of the force. The orientation is qualitatively similar to that induced by a thermal gradient. We find that the average degree of orientation is proportional to the density gradient of the fluid in the confined region and that the orientation increases with the magnitude of the force. The concurrent application of the external force and the thermal gradient allows us to disentangle the different mechanisms leading to the thermal orientation of molecular fluids. One mechanism is connected to the density variation of the fluid, while the second mechanism can be readily observed in molecular fluids consisting of molecules with mass or size asymmetry, even in the absence of a density gradient, hence it is connected to the application of the thermal gradient only.

10.
Phys Chem Chem Phys ; 18(20): 13741-5, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27148698

RESUMO

We perform computational experiments using nonequilibrium molecular dynamics simulations, showing that the interface between two solid materials can be described as an autonomous thermodynamic system. We verify the local equilibrium and give support to the Gibbs description of the interface also away from the global equilibrium. In doing so, we reconcile the common formulation of the thermal boundary resistance as the ratio between the temperature discontinuity at the interface and the heat flux with a more rigorous derivation from nonequilibrium thermodynamics. We also show that thermal boundary resistance of a junction between two pure solid materials can be regarded as an interface property, depending solely on the interface temperature, as implicitly assumed in some widely used continuum models, such as the acoustic mismatch model. Thermal rectification can be understood on the basis of different interface temperatures for the two flow directions.

11.
Phys Rev Lett ; 114(6): 065901, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25723229

RESUMO

Heat and mass transfer in nanodevices depends much on the geometry due to the strong influence of curvature on interfacial properties, such as the Kapitza resistance. We present a method which combines nonequilibrium square gradient theory and nonequilibrium molecular dynamics simulations to obtain the coefficients in a curvature expansion of the interface transfer coefficients. The expansion can be used directly to describe heat and mass transfer in complex nanogeometries. As examples of complex nanogeometries, we consider an oblate spheroidal droplet, a prolate spheroidal bubble, and a toroidal bubble. Depending on the sign and magnitude of the curvature, transfer is enhanced or reduced significantly. The presented method is applicable to many types of interfaces and substances, and we expect it to contribute to the understanding and design of future nanodevices.

12.
J Chem Phys ; 142(17): 171103, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25956081

RESUMO

A proper understanding of nucleation is crucial in several natural and industrial processes. However, accurate quantitative predictions of this phenomenon have not been possible. The most popular tool for calculating nucleation rates, classical nucleation theory (CNT), deviates by orders of magnitude from experiments for most substances. We investigate whether part of this discrepancy can be accounted for by the curvature-dependence of the surface tension. To that end, we evaluate the leading order corrections for water, the Tolman length and the rigidity constants, using square gradient theory coupled with the accurate cubic plus association equation of state. The Helfrich expansion is then used to incorporate them into the CNT-framework. For water condensation, the modified framework successfully corrects the erroneous temperature dependence of the nucleation rates given by the classical theory and reproduces experimental nucleation rates.

13.
J Chem Phys ; 142(6): 064706, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25681934

RESUMO

It is well-known that the surface tension of small droplets and bubbles deviates significantly from that at the planar interface. In this work, we analyze the leading corrections in the curvature expansion of the surface tension, i.e., the Tolman length and the rigidity constants, using a "hybrid" square gradient theory, where the local Helmholtz energy density is described by an accurate equation of state. We particularize this analysis for the case of the truncated and shifted Lennard-Jones fluid, and are then able to reproduce the surface tensions and Tolman length from recent molecular dynamics simulations within their accuracy. The obtained constants in the curvature expansion depend little on temperature, except in the vicinity of the critical point. When the bubble/droplet radius becomes comparable to the interfacial width at coexistence, the critical bubble/droplet prefers to change its density, rather than to decrease its size, and the curvature expansion is no longer sufficient to describe the change in surface tension. We find that the radius of the bubble/droplet in this region is proportional to the correlation length between fluctuations in the liquid-phase.

14.
Phys Chem Chem Phys ; 16(22): 10573-86, 2014 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-24740009

RESUMO

Heat and mass transfer through interfaces is central in nucleation theory, nanotechnology and many other fields of research. Heat transfer in nanoparticle suspensions and nanoporous materials displays significant and opposite correlations with particle and pore size. We investigate these effects further for transfer of heat and mass across interfaces of bubbles and droplets with radii down to 2 nm. We use square gradient theory at and beyond equilibrium to calculate interfacial resistances in single-component and two-component systems. Interface resistances, as defined by non-equilibrium thermodynamics, vary continuously with the interface curvature, from negative (bubbles) to zero (planar interface) to positive (droplet) values. The interface resistances of 2 nm radii bubbles/droplets are in some cases one order of magnitude different from those of the planar interface. The square gradient model predicts that the thermal interface resistances of droplets decrease with particle size, in accordance with results from the literature, only if the peak in the local resistivity is shifted toward the vapor phase. The curvature will then have an opposite effect on the resistance of bubbles and droplets. The model predicts that the coupling between heat and mass fluxes, when quantified as the heat of transfer of the interface, is of the same order of magnitude as the enthalpy change across the interface, and depends much less on curvature than the interface resistances.

15.
Phys Chem Chem Phys ; 16(3): 1227-37, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24296986

RESUMO

We have developed a classical molecular dynamics model for the hydrogen dissociation reaction, containing two- and three-particle potentials derived by Kohen, Tully and Stillinger. Two fluid densities were investigated for a wide range of temperatures, and 11 fluid densities were considered for one temperature. We report the temperature range where the degree of reaction is significant, and also where a stable molecule dominates the population in the energy landscape. The three-particle potential, which is essential for the reaction model and seldom studied, together with the two-particle interaction lead to a large effective excluded volume diameter of the molecules in the molecular fluid. The three-particle interaction was also found to give a large positive contribution to the pressure of the reacting mixture at high density and/or low temperatures. From knowledge of the dissociation constant of the reaction and the fluid pressure, we estimated the standard enthalpy of the dissociation reaction to be 430 kJ mol(-1) (ρ = 0.0695 g cm(-3)) and 380 kJ mol(-1) (ρ = 0.0191 g cm(-3)). These values are in good agreement with the experimental vaule of 436 kJ mol(-1) under ambient pressure. The model is consistent with a Lennard-Jones model of the molecular fluid, and may facilitate studies of the impact of chemical reactions on transport systems.

16.
Phys Chem Chem Phys ; 16(36): 19681-93, 2014 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-25113221

RESUMO

We show how we can find the enthalpy of a chemical reaction under non-ideal conditions using the Small System Method to sample molecular dynamics simulation data for fluctuating variables. This method, created with Hill's thermodynamic analysis, is used to find properties in the thermodynamic limit, such as thermodynamic correction factors, partial enthalpies, volumes, heat capacities and compressibility. The values in the thermodynamic limit at (T,V, µj) are then easily transformed into other ensembles, (T,V,Nj) and (T,P,Nj), where the last ensemble gives the partial molar properties which are of interest to chemists. The dissociation of hydrogen from molecules to atoms was used as a convenient model system. Molecular dynamics simulations were performed with three densities; ρ = 0.0052 g cm(-3) (gas), ρ = 0.0191 g cm(-3) (compressed gas) and ρ = 0.0695 g cm(-3) (liquid), and temperatures in the range; T = 3640-20,800 K. The enthalpy of reaction was observed to follow a quadratic trend as a function of temperature for all densities. The enthalpy of reaction was observed to only have a small pressure dependence. With a reference point close to an ideal state (T = 3640 K and ρ = 0.0052 g cm(-3)), we were able to calculate the thermodynamic equilibrium constant, and thus the deviation from ideal conditions for the lowest density. We found the thermodynamic equilibrium constant to increase with increasing temperature, and to have a negligible pressure dependence. Taking the enthalpy variation into account in the calculation of the thermodynamic equilibrium constant, we found the ratio of activity coefficients to be in the order of 0.7-1.0 for the lowest density, indicating repulsive forces between H and H2. This study shows that the compressed gas- and liquid density values at higher temperatures are far from those calculated under ideal conditions. It is important to have a method that can give access to partial molar properties, independent of the ideality of the reacting mixture. Our results show how this can be achieved with the use of the Small System Method.

17.
J Chem Phys ; 140(2): 024704, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24437899

RESUMO

Formation of nanosized droplets/bubbles from a metastable bulk phase is connected to many unresolved scientific questions. We analyze the properties and stability of multicomponent droplets and bubbles in the canonical ensemble, and compare with single-component systems. The bubbles/droplets are described on the mesoscopic level by square gradient theory. Furthermore, we compare the results to a capillary model which gives a macroscopic description. Remarkably, the solutions of the square gradient model, representing bubbles and droplets, are accurately reproduced by the capillary model except in the vicinity of the spinodals. The solutions of the square gradient model form closed loops, which shows the inherent symmetry and connected nature of bubbles and droplets. A thermodynamic stability analysis is carried out, where the second variation of the square gradient description is compared to the eigenvalues of the Hessian matrix in the capillary description. The analysis shows that it is impossible to stabilize arbitrarily small bubbles or droplets in closed systems and gives insight into metastable regions close to the minimum bubble/droplet radii. Despite the large difference in complexity, the square gradient and the capillary model predict the same finite threshold sizes and very similar stability limits for bubbles and droplets, both for single-component and two-component systems.

18.
J Chem Phys ; 141(12): 124102, 2014 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-25273407

RESUMO

We show how the Butler-Volmer and Nernst equations, as well as Peltier effects, are contained in the general equation for nonequilibrium reversible and irreversible coupling, GENERIC, with a unique definition of the overpotential. Linear flux-force relations are used to describe the transport in the homogeneous parts of the electrochemical system. For the electrode interface, we choose nonlinear flux-force relationships. We give the general thermodynamic basis for an example cell with oxygen electrodes and electrolyte from the solid oxide fuel cell. In the example cell, there are two activated chemical steps coupled also to thermal driving forces at the surface. The equilibrium exchange current density obtains contributions from both rate-limiting steps. The measured overpotential is identified at constant temperature and stationary states, in terms of the difference in electrochemical potential of products and reactants. Away from these conditions, new terms appear. The accompanying energy flux out of the surface, as well as the heat generation at the surface are formulated, adding to the general thermodynamic basis.

19.
J Chem Phys ; 141(7): 071103, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-25149768

RESUMO

One of the main challenges of thermodynamics is to predict and measure accurately the properties of metastable fluids. Investigation of these fluids is hindered by their spontaneous transformation by nucleation into a more stable phase. We show how small closed containers can be used to completely prevent nucleation, achieving infinitely long-lived metastable states. Using a general thermodynamic framework, we derive simple formulas to predict accurately the conditions (container sizes) at which this superstabilization takes place and it becomes impossible to form a new stable phase. This phenomenon opens the door to control nucleation of deeply metastable fluids at experimentally feasible conditions, having important implications in a wide variety of fields.

20.
J Chem Phys ; 141(14): 144501, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25318729

RESUMO

We present a new molecular simulation technique for determining partial molar enthalpies in mixtures of gases and liquids from single simulations, without relying on particle insertions, deletions, or identity changes. The method can also be applied to systems with chemical reactions. We demonstrate our method for binary mixtures of Weeks-Chandler-Anderson particles by comparing with conventional simulation techniques, as well as for a simple model that mimics a chemical reaction. The method considers small subsystems inside a large reservoir (i.e., the simulation box), and uses the construction of Hill to compute properties in the thermodynamic limit from small-scale fluctuations. Results obtained with the new method are in excellent agreement with those from previous methods. Especially for modeling chemical reactions, our method can be a valuable tool for determining reaction enthalpies directly from a single MD simulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA