RESUMO
The US National Institute of Standards and Technology (NIST) developed a Standard Reference Material® (SRM®) 3949 Folate Vitamers in Frozen Human Serum to replace SRM 1955 Homocysteine and Folate in Human Serum. The presence of increased endogenous levels of folic acid and 5-methyltetrahydrofolate (5mTHF) in SRM 3949, enhanced folate stability via addition of ascorbic acid, and inclusion of values for additional minor folates are improvements over SRM 1955 that should better serve the clinical folate measurement community. The new SRM contains folates at three levels. To produce SRM 3949, pilot sera were collected from 15 individual donors, 5 of whom were given a 400-µg folic acid supplement 1 h prior to blood draw to increase serum levels of 5mTHF and folic acid for the high-level material. To stabilize the folates, 0.5% (mass concentration) ascorbic acid was added as soon as possible after preparation of serum. These pilot sera were screened for five folates plus the pyrazino-s-triazine derivative of 4-α-hydroxy-5-methyltetrahydrofolate (MeFox) at the US Centers for Disease Control and Prevention (CDC) by isotope dilution liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS). Based on these results, a blending protocol was specified to obtain the three desired folate concentrations for SRM 3949. ID-LC-MS/MS analysis at the CDC and NIST was utilized to assign values for folic acid and 5mTHF, as well as several minor folates.
Assuntos
Ácido Fólico , Espectrometria de Massas em Tandem , Humanos , Ácido Fólico/análise , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Padrões de Referência , Ácido AscórbicoRESUMO
The National Institute of Standards and Technology (NIST) has developed Standard Reference Material (SRM) 972a Vitamin D Metabolites in Frozen Human Serum as a replacement for SRM 972, which is no longer available. SRM 972a was developed in collaboration with the National Institutes of Health's Office of Dietary Supplements. In contrast to the previous reference material, three of the four levels of SRM 972a are composed of unmodified human serum. This SRM has certified and reference values for the following 25-hydroxyvitamin D [25(OH)D] species: 25(OH)D2, 25(OH)D3, and 3-epi-25(OH)D3. The value assignment and certification process included three isotope-dilution mass spectrometry approaches, with measurements performed at NIST and at the Centers for Disease Control and Prevention (CDC). The value assignment methods employed have been modified from those utilized for the previous SRM, and all three approaches now incorporate chromatographic resolution of the stereoisomers, 25(OH)D3 and 3-epi-25(OH)D3.
Assuntos
25-Hidroxivitamina D 2/sangue , Calcifediol/sangue , Cromatografia Líquida/normas , Espectrometria de Massas/normas , 25-Hidroxivitamina D 2/normas , Calcifediol/química , Calcifediol/normas , Humanos , Padrões de Referência , Valores de Referência , Estereoisomerismo , Estados Unidos , United States Government AgenciesRESUMO
Two independent analytical approaches, based on liquid chromatography with absorbance detection and liquid chromatography with mass spectrometric detection, have been developed for determination of isoflavones in soy materials. These two methods yield comparable results for a variety of soy-based foods and dietary supplements. Four Standard Reference Materials (SRMs) have been produced by the National Institute of Standards and Technology to assist the food and dietary supplement community in method validation and have been assigned values for isoflavone content using both methods. These SRMs include SRM 3234 Soy Flour, SRM 3236 Soy Protein Isolate, SRM 3237 Soy Protein Concentrate, and SRM 3238 Soy-Containing Solid Oral Dosage Form. A fifth material, SRM 3235 Soy Milk, was evaluated using the methods and found to be inhomogeneous for isoflavones and unsuitable for value assignment. Graphical Abstract Separation of six isoflavone aglycones and glycosides found in Standard Reference Material (SRM) 3236 Soy Protein Isolate.
Assuntos
Cromatografia Líquida/métodos , Isoflavonas/análise , Alimentos de Soja/análise , Espectrofotometria Ultravioleta/métodos , Isótopos , Espectrometria de Massas , Espectroscopia de Prótons por Ressonância Magnética , Padrões de ReferênciaRESUMO
Chemical measurement methods are designed to promote accurate knowledge of a measurand or system. As such, these methods often allow elicitation of latent sources of variability and correlation in experimental data. They typically implement measurement equations that support quantification of effects associated with calibration standards and other known or observed parametric variables. Additionally, multiple samples and calibrants are usually analyzed to assess accuracy of the measurement procedure and repeatability by the analyst. Thus, a realistic assessment of uncertainty for most chemical measurement methods is not purely bottom-up (based on the measurement equation) or top-down (based on the experimental design), but inherently contains elements of both. Confidence in results must be rigorously evaluated for the sources of variability in all of the bottom-up and top-down elements. This type of analysis presents unique challenges due to various statistical correlations among the outputs of measurement equations. One approach is to use a Bayesian hierarchical (BH) model which is intrinsically rigorous, thus making it a straightforward method for use with complex experimental designs, particularly when correlations among data are numerous and difficult to elucidate or explicitly quantify. In simpler cases, careful analysis using GUM Supplement 1 (MC) methods augmented with random effects meta analysis yields similar results to a full BH model analysis. In this article we describe both approaches to rigorous uncertainty evaluation using as examples measurements of 25-hydroxyvitamin D3 in solution reference materials via liquid chromatography with UV absorbance detection (LC-UV) and liquid chromatography mass spectrometric detection using isotope dilution (LC-IDMS).
RESUMO
Reference standards for the vitamin D metabolites 25-hydroxyvitamin D3, 25-hydroxyvitamin D2, and 3-epi-25-hydroxyvitamin D3 were evaluated using liquid chromatography (LC) with ultraviolet (UV) absorbance and mass spectrometric (MS) detection to assess purity. The chromatograms for solutions of all three 25(OH)D compounds, obtained using a pentafluorophenyl (PFP) stationary phase, revealed peaks that increased in area over time and had MS spectra that were nearly identical to the parent compound, indicating isomers had formed in solution that were unrelated to the reference standard purity. However, when the purity evaluations were completed with a cyanopropyl stationary phase, the isomeric products coeluted with the parent compounds and were not observable. The rates of formation of the isomeric products were found to increase when heated and were confirmed to be pre-25-hydroxyvitamin D compounds using spectral information from both MS detection and nuclear magnetic resonance (NMR) spectroscopy. The rates of conversion of 25(OH)D3 to pre-25(OH)D3 was studied in solutions of ethanol and bovine serum albumin (BSA) in phosphate-buffered saline (PBS). The solutions prepared with BSA/PBS were found to form twice as much pre-25(OH)D3 as the solutions in ethanol. The isomerization of 25(OH)D in solution has implications for calibration of 25(OH)D in clinical measurements, which are discussed.
Assuntos
25-Hidroxivitamina D 2/química , Calcifediol/química , Espectrometria de Massas/métodos , Vitamina D/análogos & derivados , Animais , Calibragem , Bovinos , Cromatografia Líquida/métodos , Isomerismo , Padrões de Referência , Soroalbumina Bovina/química , Soluções , Vitamina D/químicaRESUMO
Given the critical role of pure, organic compound primary reference standards used to characterize and certify chemical Certified Reference Materials (CRMs), it is essential that associated mass purity assessments be fit-for-purpose, represented by an appropriate uncertainty interval, and metrologically sound. The mass fraction purities (% g/g) of 25-hydroxyvitamin D (25(OH)D) reference standards used to produce and certify values for clinical vitamin D metabolite CRMs were investigated by multiple orthogonal quantitative measurement techniques. Quantitative (1)H-nuclear magnetic resonance spectroscopy (qNMR) was performed to establish traceability of these materials to the International System of Units (SI) and to directly assess the principal analyte species. The 25(OH)D standards contained volatile and water impurities, as well as structurally-related impurities that are difficult to observe by chromatographic methods or to distinguish from the principal 25(OH)D species by one-dimensional NMR. These impurities have the potential to introduce significant biases to purity investigations in which a limited number of measurands are quantified. Combining complementary information from multiple analytical methods, using both direct and indirect measurement techniques, enabled mitigation of these biases. Purities of 25(OH)D reference standards and associated uncertainties were determined using frequentist and Bayesian statistical models to combine data acquired via qNMR, liquid chromatography with UV absorbance and atmospheric pressure-chemical ionization mass spectrometric detection (LC-UV, LC-ACPI-MS), thermogravimetric analysis (TGA), and Karl Fischer (KF) titration.
Assuntos
Cromatografia Líquida/normas , Espectroscopia de Ressonância Magnética/normas , Espectrometria de Massas/normas , Vitamina D/isolamento & purificação , Teorema de Bayes , Cromatografia Líquida/métodos , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/métodos , Padrões de Referência , Soluções , Termogravimetria , Vitamina D/análogos & derivadosRESUMO
The National Institute of Standards and Technology (NIST), in collaboration with the National Institutes of Health (NIH), has developed a Standard Reference Material (SRM) to support technology development in metabolomics research. SRM 1950 Metabolites in Human Plasma is intended to have metabolite concentrations that are representative of those found in adult human plasma. The plasma used in the preparation of SRM 1950 was collected from both male and female donors, and donor ethnicity targets were selected based upon the ethnic makeup of the U.S. population. Metabolomics research is diverse in terms of both instrumentation and scientific goals. This SRM was designed to apply broadly to the field, not toward specific applications. Therefore, concentrations of approximately 100 analytes, including amino acids, fatty acids, trace elements, vitamins, hormones, selenoproteins, clinical markers, and perfluorinated compounds (PFCs), were determined. Value assignment measurements were performed by NIST and the Centers for Disease Control and Prevention (CDC). SRM 1950 is the first reference material developed specifically for metabolomics research.
Assuntos
Análise Química do Sangue/normas , Metabolômica/normas , Adulto , Aminoácidos/sangue , Biomarcadores/sangue , Carotenoides/sangue , Ácidos Graxos/sangue , Feminino , Humanos , Masculino , National Institutes of Health (U.S.) , Padrões de Referência , Estados Unidos , Vitaminas/sangueRESUMO
The National Institute of Standards and Technology (NIST), in collaboration with the National Institutes of Health's Office of Dietary Supplements (NIH-ODS), has developed a Standard Reference Material (SRM) for the determination of 25-hydroxyvitamin D [25(OH)D] in serum. SRM 972 Vitamin D in Human Serum consists of four serum pools with different levels of vitamin D metabolites and has certified and reference values for 25(OH)D(2), 25(OH)D(3), and 3-epi-25(OH)D(3). Value assignment of this SRM was accomplished using a combination of three isotope-dilution mass spectrometry approaches, with measurements performed at NIST and at the Centers for Disease Control and Prevention (CDC). Chromatographic resolution of the 3-epimer of 25(OH)D(3) proved to be essential for accurate determination of the metabolites.
Assuntos
Vitamina D/análogos & derivados , Cromatografia Líquida , Humanos , Espectrometria de Massas , Padrões de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Vitamina D/análise , Vitamina D/sangue , Vitamina D/normasRESUMO
Catechins and gallic acid are antioxidant constituents of Camellia sinensis, or green tea. Liquid chromatography with both ultraviolet (UV) absorbance and electrospray ionization mass spectrometric (ESI/MS) detection was used to determine catechins and gallic acid in three green tea matrix materials that are commonly used as dietary supplements. The results from both detection modes were evaluated with 14 quantitation models, all of which were based on the analyte response relative to an internal standard. Half of the models were static, where quantitation was achieved with calibration factors that were constant over an analysis set. The other half were dynamic, with calibration factors calculated from interpolated response factor data at each time a sample was injected to correct for potential variations in analyte response over time. For all analytes, the relatively nonselective UV responses were found to be very stable over time and independent of the calibrant concentration; comparable results with low variability were obtained regardless of the quantitation model used. Conversely, the highly selective MS responses were found to vary both with time and as a function of the calibrant concentration. A dynamic quantitation model based on polynomial data-fitting was used to reduce the variability in the quantitative results using the MS data.
Assuntos
Produtos Biológicos/análise , Camellia sinensis/química , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Antioxidantes/análise , Calibragem , Catequina/análise , Ácido Gálico/análise , Taninos Hidrolisáveis/análise , Modelos Estatísticos , Padrões de Referência , Reprodutibilidade dos TestesRESUMO
Vitamin D exists in two major forms, vitamin D(3) and vitamin D(2). Vitamin D helps the body absorb calcium and promote optimal bone health. Both forms of vitamin D are metabolized to 25-hydroxyvitamin D in the body, and the levels of 25-hydroxyvitamin D(3) [25(OH)D(3)] and 25-hydroxyvitamin D(2) [25(OH)D(2)] in serum are considered the best indicators of vitamin D status. A candidate reference measurement procedure for serum 25(OH)D(3) and 25(OH)D(2) has been developed and critically evaluated. The deuterated compounds 25(OH)D(3)-d(3) and 25(OH)D(2)-d(3) are used as internal standards for 25(OH)D(3) and 25(OH)D(2), respectively. The 25(OH)D(3) and 25(OH)D(2) and their respective labeled internal standards are simultaneously extracted from serum using liquid-liquid extraction prior to reversed-phase liquid chromatography-tandem mass spectrometry (LC-MS/MS). Chromatographic separation was performed using a cyano (CN) column for both 25(OH)D(3) and 25(OH)D(2). Atmospheric pressure chemical ionization (APCI) in the positive ion mode and multiple reaction monitoring (MRM) were used for LC-MS/MS. The accuracy of the method was evaluated by recovery studies of measuring 25-hydroxyvitamin D [25(OH)D] in spiked samples with known 25(OH)D levels. The recoveries of the added 25(OH)D(3) and 25(OH)D(2) ranged from 99.0% to 101.0%. The absolute recoveries with this method were 97% and 92% for 25(OH)D(3) and 25(OH)D(2), respectively. Excellent precision was obtained with between-set coefficients of variation (CVs) of 0.2-0.6% for 25(OH)D levels >1 ng/g and within 2% for the level of <1 ng/g. Chromatographic separation of 25(OH)D(3) and 25(OH)D(2) from their respective isomers 3-epi-25(OH)D(3) and 3-epi-25(OH)D(2) was achieved. The limit of detection at a signal-to-noise ratio of approximately 3 was 40 pg of 25(OH)D on column (or approximately 0.15 ng/g as expressed as a concentration). This candidate reference measurement procedure for serum 25(OH)D(3) and 25(OH)D(2) demonstrates good accuracy and precision and low susceptibility to interferences. It can be used to provide an accuracy base to which clinical methods for 25(OH)D(3) and 25(OH)D(2) can be compared and that will serve as a standard of higher order for measurement traceability.
Assuntos
25-Hidroxivitamina D 2/sangue , Calcifediol/sangue , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Humanos , IsótoposRESUMO
Theanine is the major amino acid present in Camellia sinensis or green tea. A method for determining theanine in its native state using liquid chromatography with positive-mode electrospray ionization mass spectrometric detection was developed. Quantitation of theanine was achieved using theanine-[(2)H(5)] as an internal standard. This approach was utilized on different green tea matrix materials that are commonly used as dietary supplements including powdered plant leaves, a powdered plant leaf extract, and an oral dosage form that contains green tea. The theanine response was linear over several orders of magnitude, and excellent measurement precision was obtained for all three materials using the developed method.
Assuntos
Camellia sinensis/química , Cromatografia Líquida/métodos , Glutamatos/análise , Extratos Vegetais/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Chá/químicaRESUMO
The off-flavor compounds geosmin and 2-methylisoborneol (2-MIB) are well-known to impact the quality of farmed freshwater fish species, but little is known about off-flavors in marine aquaculture. To begin addressing this knowledge gap, a method for determining geosmin and 2-MIB using LC with atmospheric pressure chemical ionization (APCI) MS detection was developed. While 2-MIB was readily detected using LC-APCI/MS, geosmin exhibited on-column degradation that was independent of column chemistry and could not be eliminated. Optimized conditions were identified that balanced the separation and ionization efficiency of 2-MIB and geosmin while minimizing geosmin degradation, but the overall method sensitivity for geosmin was reduced by the on-column losses. The method was used with direct aqueous injections to determine the volatilization rates of geosmin and 2-MIB at ppb levels during aeration under laboratory conditions in both salt water and pure water to simulate marine and fresh water aquaculture, respectively. The volatilization rates of both compounds were 30% faster in salt water than in fresh water with or without aeration, but aeration was found to enhance the rate by a factor of 2.5 in both water types. The LC-APCI/MS method was combined with stir bar sorptive extraction (SBSE) to achieve greater sensitivity for determining off-flavors in recirculating aquaculture system (RAS) water. Using SBSE-LC-APCI/MS, the LODs for geosmin and 2-MIB were 70â¯ng/kg (part per trillion) and 6â¯ng/kg, respectively. The on-column losses resulted in a relatively high LOD for geosmin that renders this method unsuitable for determining geosmin at the low ng/kg levels expected in RAS. SBSE using both grab water samples and an in-situ diving unit were used to evaluate 2-MIB levels in the culture water of two separate marine RAS that were supporting the growth of European sea bass but had differing levels of water treatment. 2-MIB was readily detected using both SBSE approaches in the RAS with less sophisticated treatment when the animal stocking density was at its highest (50â¯kg/m3) but was not detected in the more sophisticated RAS regardless of stocking density. Geosmin was not detected in either system, but the results were inconclusive given its higher LOD. These limited results suggest that the anaerobic water treatment components, present only in the more sophisticated RAS, maintained the level of 2-MIB below the LOD.
Assuntos
Aquicultura , Pressão Atmosférica , Cromatografia Líquida/métodos , Aromatizantes/análise , Espectrometria de Massas/métodos , Animais , Canfanos/isolamento & purificação , Água Doce/análise , Limite de Detecção , Naftóis/química , Naftóis/isolamento & purificação , Fatores de Tempo , Volatilização , Água , Poluentes Químicos da Água/análise , Purificação da ÁguaRESUMO
Liquid chromatographic (LC) methods using atmospheric pressure chemical ionization/mass spectrometric (APCI-MS) detection were developed for the separation and analysis of the phytosterols campesterol, cycloartenol, lupenone, lupeol, beta-sitosterol, and stigmasterol. Brassicasterol and cholesterol were also included for investigation as internal standards. The methods were used to identify and quantify the phytosterols in each of two Serenoa repens (saw palmetto) Standard Reference Materials (SRMs) developed by the National Institute of Standards and Technology (NIST). Values obtained by LC-MS were compared to those obtained using the more traditional approach of gas chromatography with flame ionization detection. This is the first reported use of LC-MS to determine phytosterols in saw palmetto dietary supplement materials.
Assuntos
Cromatografia Líquida/métodos , Fitosteróis/isolamento & purificação , Serenoa/química , Espectrometria de Massas , Fitosteróis/análise , Padrões de ReferênciaRESUMO
As part of a collaboration with the National Institutes of Health's Office of Dietary Supplements and the Food and Drug Administration's Center for Drug Evaluation and Research, the National Institute of Standards and Technology has developed two standard reference materials (SRMs) representing different forms of saw palmetto (Serenoa repens), SRM 3250 Serenoa repens fruit and SRM 3251 Serenoa repens extract. Both of these SRMs have been characterized for their fatty acid and phytosterol content. The fatty acid concentration values are based on results from gas chromatography with flame ionization detection (GC-FID) and mass spectrometry (GC/MS) analysis while the sterol concentration values are based on results from GC-FID and liquid chromatography with mass spectrometry analysis. In addition, SRM 3250 has been characterized for lead content, and SRM 3251 has been characterized for the content of beta-carotene and tocopherols. SRM 3250 (fruit) has certified concentration values for three phytosterols, 14 fatty acids as triglycerides, and lead along with reference concentration values for four fatty acids as triglycerides and 16 free fatty acids. SRM 3251 (extract) has certified concentration values for three phytosterols, 17 fatty acids as triglycerides, beta-carotene, and gamma-tocopherol along with reference concentration values for three fatty acids as triglycerides, 17 fatty acids as free fatty acids, beta-carotene isomers, and delta-tocopherol and information values for two phytosterols. These SRMs will complement other reference materials currently available with concentrations for similar analytes and are part of a series of SRMs being developed for dietary supplements.
Assuntos
Frutas/química , Extratos Vegetais/análise , Extratos Vegetais/química , Serenoa/química , Ácidos Graxos/análise , Padrões de Referência , Esteróis/análise , Tocoferóis/química , beta Caroteno/análiseRESUMO
The National Institute of Standards and Technology (NIST), in collaboration with the National Institutes of Health Office of Dietary Supplements and the Vitamin D Standardization Program, has recently issued a new serum-matrix Standard Reference Material (SRM): 2973 Vitamin D Metabolites in Frozen Human Serum (High Level). SRM 2973 was designed to provide a serum material with a total 25-hydroxyvitamin D [25(OH)D] concentration near 100 nmol/L to complement the existing serum-based SRMs with values assigned for total 25(OH)D between 20 and 80 nmol/L. Values were assigned for 25-hydroxyvitamin D2 [25(OH)D2], 25-hydroxyvitamin D3 [25(OH)D3], 3-epi-25(OH)D3, and total 25(OH)D [the sum of 25(OH)D2 + 25(OH)D3] using the NIST isotope dilution LC with tandem MS (MS/MS) reference measurement procedure (RMP) and related methods. SRM 2973 has a certified value of 98.4 ± 2.1 nmol/L for 25(OH)D3 and reference values of 1.59 ± 0.05 nmol/L for 25(OH)D2 and 5.23 ± 0.20 nmol/L for 3-epi-25(OH)D3. In addition, a candidate RMP for 24R,25-dihydroxyvitamin D3 [24R,25(OH)2D3] based on LC-MS/MS was used to assign values to SRM 2973 and the existing SRM 972a Vitamin D Metabolites in Frozen Human Serum. Reference values for 24R,25(OH)2D3 were assigned to SRM 2973 (7.51 ± 0.26 nmol/L) and the four levels of SRM 972a: Level 1 (6.38 ± 0.23 nmol/L), Level 2 (3.39 ± 0.12 nmol/L), Level 3 (3.88 ± 0.013 nmol/L), and Level 4 (6.32 ± 0.22 nmol/L). The development of SRM 2973 [with a higher concentration of 25(OH)D3] and the addition of values for 24R,25(OH)2D3 assigned to both SRM 972a and SRM 2973 provide laboratories involved in vitamin D measurements with improved QA tools.
Assuntos
25-Hidroxivitamina D 2/sangue , Análise Química do Sangue/normas , Calcifediol/sangue , Humanos , Espectrometria de Massas em Tandem/normas , Estados Unidos , Vitamina DRESUMO
Since 2005, the National Institute of Standards and Technology (NIST) has collaborated with the National Institutes of Health (NIH), Office of Dietary Supplements (ODS) to improve the quality of measurements related to human nutritional markers of vitamin D status. In support of the NIH-ODS Vitamin D Initiative, including the Vitamin D Standardization Program (VDSP), NIST efforts have focused on (1) development of validated analytical methods, including reference measurement procedures (RMPs); (2) development of Standard Reference Materials (SRMs); (3) value assignment of critical study samples using NIST RMPs; and (4) development and coordination of laboratory measurement QA programs. As a result of this collaboration, NIST has developed RMPs for 25-hydroxyvitamin D2 [25(OH)D2], 25(OH)D3, and 24R,25-dihydroxyvitamin D3 [24R,25(OH)2D3]; disseminated serum-based SRMs with values assigned for 25(OH)D2, 25(OH)D3, 3-epi-25(OH)D3, and 24R,25(OH)2D3; assigned values for critical samples for VDSP studies, including an extensive interlaboratory comparison and reference material commutability study; provided an accuracy basis for the Vitamin D External Quality Assurance Scheme; coordinated the first accuracy-based measurement QA program for the determination of 25(OH)D2, 25(OH)D3, and 3-epi-25(OH)D3 in human serum/plasma; and developed methods and SRMs for the determination of vitamin D and 25(OH)D in food and supplement matrix SRMs. The details of these activities and their benefit and impact to the NIH-ODS Vitamin D Initiative are described.
Assuntos
25-Hidroxivitamina D 2/sangue , Análise Química do Sangue/normas , Humanos , National Institutes of Health (U.S.) , Controle de Qualidade , Estados Unidos , Vitamina DRESUMO
The reactivities of the amine-containing pharmaceuticals fluoxetine and metoprolol with hypochlorite were studied using conditions that simulate wastewater disinfection including neutral pH (7.0), a range of reaction times (2-60 min), and a molar excess of hypochlorite relative to the pharmaceutical concentration (5.7 times). The reactions were monitored using liquid chromatography (LC) with several detection modes including ultraviolet absorbance (UV), mass spectrometry (MS), and post-column reaction/reductive electrochemistry (EC) for determining active chlorine products. At levels of 10 microM, both compounds reacted rapidly (<2 min) to form principally N-chloramine products that were stable in aqueous solution for at least 1h. The reaction was also studied in wastewater, and similar reactivity was noted. These results demonstrate that the cations fluoxetine and metoprolol are likely to be rapidly transformed into neutral N-chloramines during wastewater disinfection. The reactivity of the N-chloramines was also studied with sulfite to simulate dechlorination, which is often employed in wastewater treatment. Both N-chloramines reacted slowly with sulfite. In the pure water dechlorination experiments, it was estimated that 70% and 10% of the peak areas remained after 2 min reaction time for fluoxetine and metoprolol, respectively. At longer reaction times both N-chloramines had been completely reduced by sulfite, and the product of the sulfite reduction reaction was the parent pharmaceutical amine. Since typical dechlorination times in wastewater treatment are on the order of seconds, this suggests the chloramines formed from these two basic drugs might evade dechlorination and be released into the environment. The implications of chloramine release are discussed.
Assuntos
Cloro/química , Recuperação e Remediação Ambiental , Fluoxetina/química , Metoprolol/química , Poluentes Químicos da Água , Cromatografia Líquida , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria UltravioletaRESUMO
The residual chlorine in chlorine-disinfected and dechlorinated wastewater was characterized using a liquid chromatograph that was switched between reversed-phase separation and flow injection analysis modes, permitting measurement of fractionated and total residual chlorine, respectively. Residuals were detected in the effluent of an operating wastewater treatment plant employing chlorine disinfection and sulfite dechlorination. Despite dechlorination, an estimated total residual chlorine of 3 microM (0.2 ppm as Cl2) was detected in the effluent. To improve dechlorination effectiveness, four alternative agents (ascorbic acid, iron, sulfite plus iodide mediator, thiosulfate) were compared to sulfite on laboratory-chlorinated wastewater. Listed in order of decreasing relative effectiveness, we found: iron metal >> sulfite plus iodide approximately = thiosulfate > sulfite >> ascorbic acid. Only the iron metal column was completely effective at rapidly removing all traces of residual chlorine.
Assuntos
Cloro/análise , Desinfetantes/análise , Purificação da Água/métodos , Abastecimento de Água/normas , Ácido Ascórbico/química , Cromatografia Líquida , Iodetos/química , Ferro/química , Sulfitos/química , Tiossulfatos/químicaRESUMO
Inorganic and organic chloramines pose a threat to aquatic ecosystems that are exposed to discharges of treated and disinfected wastewater. Conventionally practiced dechlorination with sulfite reduces the most refractory organic chloramines too slowly to produce wastewater effluents that meet current ecosystem protection criteria in the United States (i.e. total residual chlorine < or =0.011mg Cl(2)/L in freshwaters). Seeking faster dechlorinating agents, we have measured the rates that four test chloramines (NH(2)Cl, N-Cl-piperidine, N-Cl-leucylalanine and N-Cl-alanylalanine) react with 10 selected reducing agents at pH 7.4 and pH 8.4. The aqueous-phase reducing agents that offer speed advantages over sulfite alone include dithionite, thiosulfate, and iodide-mediated sulfite. Ascorbic acid was the most reactive of the sulfur-free agents but was found to be slow relative to sulfite. The potential biological oxygen demand might constrain the choice of aqueous reductants. Metallic iron is shown to reduce inorganic and organic chloramines effectively. The implications of these results for wastewater chlorine reduction and analysis are discussed.
Assuntos
Cloraminas/análise , Cloro/química , Desinfetantes/análise , Sulfitos/química , Purificação da Água/métodos , Ácido Ascórbico/química , Cloro/análise , Meia-Vida , Concentração de Íons de Hidrogênio , Ferro/química , Tiossulfatos/análise , Fatores de Tempo , Eliminação de Resíduos Líquidos , Abastecimento de Água/análiseRESUMO
Liquid chromatographic (LC) measurement of individual N-chloramines, which are key byproducts of wastewater and drinking water chlorination, could lead to more effective control of water disinfection. Such measurements are challenging because of analyte instability. A detector selective for N-chloramines is constructed based on postcolumn derivatization with iodide followed by reductive detection of the iodine product at a glassy carbon electrode. In flow injection (FIA) mode, the detector gives identical responses for a test set of four chemically diverse N-chloramines. In the LC mode, losses of the test compounds are observed when LC and FIA responses are compared and quantitated by introducing a relative response factor (RRF). Using the RRF, N-chloramine recoveries are evaluated as a function of multiple LC separation parameters. The highest recoveries are obtained using a reversed-phase (C18) column with an acetonitrile mobile phase and a pH 7.02 aqueous phosphate buffer. With these conditions, linear calibration curves are obtained for all test N-chloramines. The detection limits obtained are in the low 10(-7)-mol/L range, which is nearly tenfold better than previously reported and 10-1000-fold lower than total residual chlorine concentrations typically found in disinfected water and wastewater.