Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35214452

RESUMO

With the ever-increasing popularity of wearable devices, data on the time and location of popular walking, running, and bicycling routes is expansive and growing rapidly. These data are currently used primarily for route discovery and mobile context awareness, as it provides precise and updated information about urban dynamics. We leverage these data to build ad hoc transportation flows, and we present a novel model that creates delivery networks from these zero-emission transportation flows. We evaluate the model using data from two popular datasets, and our results indicate that such networks are indeed possible, and can help reduce traffic, emissions, and delivery times. Moreover, we demonstrate how our results can be consistently reproduced in different cities with different subsets of carriers. We then extend our work into predicting routes of vehicles, hence possible delivery flows, based on the traces history. We conclude this paper by laying the groundwork for a future real-world study.


Assuntos
Crowdsourcing , Ciclismo , Cidades , Meios de Transporte/métodos , Caminhada
2.
Comput Commun ; 161: 225-237, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32834199

RESUMO

Mobile crowdsensing (MCS) has become a popular paradigm for data collection in urban environments. In MCS systems, a crowd supplies sensing information for monitoring phenomena through mobile devices. Depending on the degree of involvement of users, MCS systems can be participatory, opportunistic or hybrid, which combines strengths of above approaches. Typically, a large number of participants is required to make a sensing campaign successful which makes impractical to build and deploy large testbeds to assess the performance of MCS phases like data collection, user recruitment, and evaluating the quality of information. Simulations offer a valid alternative. In this paper, we focus on hybrid MCS and extend CrowdSenSim 2.0 in order to support such systems. Specifically, we propose an algorithm for efficient re-route users that would offer opportunistic contribution towards the location of sensitive MCS tasks that require participatory-type of sensing contribution. We implement such design in CrowdSenSim 2.0, which by itself extends the original CrowdSenSim by featuring a stateful approach to support algorithms where the chronological order of events matters, extensions of the architectural modules, including an additional system to model urban environments, code refactoring, and parallel execution of algorithms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA