Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 1448, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664252

RESUMO

Hydrological transformations induced by climate warming are causing Arctic annual fluvial energy to shift from skewed (snowmelt-dominated) to multimodal (snowmelt- and rainfall-dominated) distributions. We integrated decade-long hydrometeorological and biogeochemical data from the High Arctic to show that shifts in the timing and magnitude of annual discharge patterns and stream power budgets are causing Arctic material transfer regimes to undergo fundamental changes. Increased late summer rainfall enhanced terrestrial-aquatic connectivity for dissolved and particulate material fluxes. Permafrost disturbances (<3% of the watersheds' areal extent) reduced watershed-scale dissolved organic carbon export, offsetting concurrent increased export in undisturbed watersheds. To overcome the watersheds' buffering capacity for transferring particulate material (30 ± 9 Watt), rainfall events had to increase by an order of magnitude, indicating the landscape is primed for accelerated geomorphological change when future rainfall magnitudes and consequent pluvial responses exceed the current buffering capacity of the terrestrial-aquatic continuum.

2.
Sci Rep ; 10(1): 11836, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32678255

RESUMO

Climate warming and changing precipitation patterns have thermally (active layer deepening) and physically (permafrost-thaw related mass movements) disturbed permafrost-underlain watersheds across much of the Arctic, increasing the transfer of dissolved and particulate material from terrestrial to aquatic ecosystems. We examined the multiyear (2006-2017) impact of thermal and physical permafrost disturbances on all of the major components of fluvial flux. Thermal disturbances increased the flux of dissolved organic carbon (DOC), but localized physical disturbances decreased multiyear DOC flux. Physical disturbances increased major ion and suspended sediment flux, which remained elevated a decade after disturbance, and changed carbon export from a DOC to a particulate organic carbon (POC) dominated system. As the magnitude and frequency of physical permafrost disturbance intensifies in response to Arctic climate change, disturbances will become an increasingly important mechanism to deliver POC from terrestrial to aquatic ecosystems. Although nival runoff remained the primary hydrological driver, the importance of pluvial runoff as driver of fluvial flux increased following both thermal and physical permafrost disturbance. We conclude the transition from a nival-dominated fluvial regime to a regime where rainfall runoff is proportionately more important will be a likely tipping point to accelerated High Arctic change.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA