Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem A ; 117(8): 1737-43, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23343336

RESUMO

Compounds rich in nitrogen are attracting significant interest not only because of their high energy content but also because they are potentially more environmentally benign in comparison to conventional energetic materials. Given this interest, it is desirable to understand their molecular composition and structural variations with pressure to derive their stability and determine the conditions in which they transform physically or chemically. In this study, we examine the room-temperature isothermal compression behavior of bis-triaminoguanidinium azotetrazolate (TAGzT) by in situ Raman spectroscopy to pressures near 17 GPa. We assign the characteristic vibrational bands and report the effects of pressure on band intensity, line width, and frequency shift. Two prominent peaks near 1370 and 1470 cm(-1) arise from the C-N and N═N symmetric stretches, respectively. Overall, the intensity of these bands and others diminishes with pressure, and their spectral linewidths increase monotonically upon compression. The vibrational frequency modes blue shift linearly upon compression, indicating a generalized stiffening of the bonds as the pressure increases. These results, together with micro Raman spectroscopic analyses of the recovered, decompressed samples, suggest that TAGzT does not undergo any phase transitions within this pressure range. We estimate and report the C-N and N═N intermolecular bond lengths under compression.

2.
Ultramicroscopy ; 202: 163-172, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31078950

RESUMO

Accurate quantification of light elements which produce only soft X-ray lines via X-ray energy dispersive spectrometry (XEDS) has been traditionally difficult due to poor X-ray emission and detector efficiencies at low energies and significant X-ray absorption effects. The ζ-factor microanalysis method enables one to correct for these shortcomings; however, ζ-factor microanalysis has not yet been thoroughly applied to inorganic materials which are entirely or mostly composed of light elements such as boron carbide, boron nitride, or boron suboxide. This work successfully extended ζ-factor microanalysis to boron-rich ceramics and accurately determined stoichiometries of multiple boron carbides and measured grain boundary compositions of a boron carbide mixed with additives consisting of rare-earth ions. Various strategies were employed to experimentally determine a full range of ζ-factors and measurements were validated using materials of known composition including silicon hexaboride and silicon carbide. Overall, this work has shown that XEDS is a viable technique for light element quantification in (scanning) transmission electron microscopy, in terms of both the accuracy and precision, which is comparable or superior to the complementary electron energy loss spectrometry.

3.
Artigo em Inglês | MEDLINE | ID: mdl-23832164

RESUMO

Molecular vibrational spectroscopy provides a useful tool for material characterization and model verification. We examine the CH stretching fundamental and overtones of energetic material ß-2,4,6,8,10,12-hexanitrohexaaziosowurtzitane (ß-CL-20) by Raman spectroscopy, Fourier Transform Infrared Spectroscopy, and Laser Photoacoustic Overtone Spectroscopy, and utilize Density Functional Theory to calculate the C-H bond energy of ß-CL-20 in a crystal. The spectra reveal four intense and distinct features, whose analysis yields C-H stretching fundamental frequencies and anharmonicity values that range from 3137 to 3170 cm(-1) and 53.8 to 58.8 cm(-1), respectively. From these data, we estimate an average value of 42,700 cm(-1) (5.29 eV) for the C-H bond energy, a value that agrees with our quantum mechanical calculations.


Assuntos
Hidrocarbonetos Aromáticos com Pontes/química , Espectroscopia de Infravermelho com Transformada de Fourier , Cristalização , Modelos Moleculares , Teoria Quântica , Análise Espectral Raman
4.
Rev Sci Instrum ; 81(3): 033507, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20383905

RESUMO

We discuss the circuit design of a digital multiradian phase detector that measures the phase difference between two 10 kHz square wave TTL signals and provides the result as a binary number. The phase resolution of the circuit is 1/64 period and its dynamic range is 256 periods. This circuit has been developed for fusion plasma interferometry with submillimeter waves on the ASDEX Upgrade tokamak. The results from interferometric density measurement are discussed and compared to those obtained with the previously used phase detectors, especially with respect to the occurrence of phase jumps. It is illustrated that the new phase measurement provides a powerful tool for automatic real-time validation of the measured density, which is important for feedback algorithms that are sensitive to spurious density signals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA