Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Appl Microbiol Biotechnol ; 98(5): 2231-41, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24413916

RESUMO

To investigate the molecular mechanisms that interplay between oxygen metabolism and secondary metabolism in Streptomyces natalensis, we compared the transcriptomes of the strains CAM.02 (ΔsodF), pimaricin under-producer phenotype, and CAM.04 (ΔahpCD), pimaricin over-producer phenotype, with that of the wild type at late exponential and stationary growth phases. Microarray data interpretation was supported by characterization of the mutant strains regarding enzymatic activities, phosphate uptake, oxygen consumption and pimaricin production.Both mutant strains presented a delay in the transcription activation of the PhoRP system and pimaricin biosynthetic gene cluster that correlated with the delayed inorganic phosphate (Pi) depletion in the medium and late onset of pimaricin production, respectively. The carbon flux of both mutants was also altered: a re-direction from glycolysis to the pentose phosphate pathway (PPP) in early exponential phase followed by a transcriptional activation of both pathways in subsequent growth phases was observed. Mutant behavior diverged at the respiratory chain/tricarboxylic acid cycle (TCA) and the branched chain amino acid (BCAA) metabolism. CAM.02 (ΔsodF) presented an impaired TCA cycle and an inhibition of the BCAA biosynthesis and degradation pathways. Conversely, CAM.04 (ΔahpCD) presented a global activation of BCAA metabolism.The results highlight the cellular NADPH/NADH ratio and the availability of biosynthetic precursors via the BCAA metabolism as the main pimaricin biosynthetic bottlenecks under oxidative stress conditions. Furthermore, new evidences are provided regarding a crosstalk between phosphate metabolism and oxidative stress in Streptomyces.


Assuntos
Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Natamicina/biossíntese , Espécies Reativas de Oxigênio/metabolismo , Streptomyces/efeitos dos fármacos , Streptomyces/metabolismo , Carbono/metabolismo , Deleção de Genes , Perfilação da Expressão Gênica , Análise do Fluxo Metabólico , Análise em Microsséries , Streptomyces/enzimologia , Streptomyces/genética
2.
mBio ; : e0104523, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38032200

RESUMO

IMPORTANCE: In 2022, it was estimated that 10.6 million people fell ill, and 1.6 million people died from tuberculosis (TB). Available treatment is lengthy and requires a multi-drug regimen, which calls for new strategies to cure Mycobacterium tuberculosis (Mtb) infections more efficiently. We have previously shown that simultaneous inactivation of type 1 (Ndh-1) and type 2 (Ndh-2) NADH dehydrogenases kills Mtb. NADH dehydrogenases play two main physiological roles: NADH oxidation and electron entry into the respiratory chain. Here, we show that this bactericidal effect is a consequence of impaired NADH oxidation. Importantly, we demonstrate that Ndh-1/Ndh-2 synthetic lethality can be achieved through simultaneous chemical inhibition, which could be exploited by TB drug development programs.

3.
bioRxiv ; 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37090679

RESUMO

Type 2 NADH dehydrogenase (Ndh-2) is an oxidative phosphorylation enzyme discussed as a promising drug target in different pathogens, including Plasmodium falciparum and Mycobacterium tuberculosis (Mtb). To kill Mtb, Ndh-2 needs to be inactivated together with the alternative enzyme type 1 NADH dehydrogenase (Ndh-1), but the mechanism of this synthetic lethality remained unknown. Here, we provide insights into the biology of NADH dehydrogenases and a mechanistic explanation for Ndh-1 and Ndh-2 synthetic lethality in Mtb. NADH dehydrogenases have two main functions: maintaining an appropriate NADH/NAD+ ratio by converting NADH into NAD+ and providing electrons to the respiratory chain. Heterologous expression of a water forming NADH oxidase (Nox), which catalyzes the oxidation of NADH, allows to distinguish between these two functions and show that Nox rescues Mtb from Ndh-1/Ndh-2 synthetic lethality, indicating that NADH oxidation is the essential function of NADH dehydrogenases for Mtb viability. Quantification of intracellular levels of NADH, NAD, ATP, and oxygen consumption revealed that preventing NADH oxidation by Ndh-2 depletes NAD(H) and inhibits respiration. Finally, we show that Ndh-1/ Ndh-2 synthetic lethality can be achieved through chemical inhibition.

4.
Elife ; 122023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36810158

RESUMO

Cyclic AMP (cAMP) is a ubiquitous second messenger that transduces signals from cellular receptors to downstream effectors. Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis, devotes a considerable amount of coding capacity to produce, sense, and degrade cAMP. Despite this fact, our understanding of how cAMP regulates Mtb physiology remains limited. Here, we took a genetic approach to investigate the function of the sole essential adenylate cyclase in Mtb H37Rv, Rv3645. We found that a lack of rv3645 resulted in increased sensitivity to numerous antibiotics by a mechanism independent of substantial increases in envelope permeability. We made the unexpected observation that rv3645 is conditionally essential for Mtb growth only in the presence of long-chain fatty acids, a host-relevant carbon source. A suppressor screen further identified mutations in the atypical cAMP phosphodiesterase rv1339 that suppress both fatty acid and drug sensitivity phenotypes in strains lacking rv3645. Using mass spectrometry, we found that Rv3645 is the dominant source of cAMP under standard laboratory growth conditions, that cAMP production is the essential function of Rv3645 in the presence of long-chain fatty acids, and that reduced cAMP levels result in increased long-chain fatty acid uptake and metabolism and increased antibiotic susceptibility. Our work defines rv3645 and cAMP as central mediators of intrinsic multidrug resistance and fatty acid metabolism in Mtb and highlights the potential utility of small molecule modulators of cAMP signaling.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/metabolismo , AMP Cíclico/metabolismo , Tuberculose/microbiologia , Ácidos Graxos/metabolismo , Resistência a Medicamentos
5.
mBio ; 14(4): e0034023, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37350592

RESUMO

Nicotinamide adenine dinucleotide (NAD) and its phosphorylated derivative (NADP) are essential cofactors that participate in hundreds of biochemical reactions and have emerged as therapeutic targets in cancer, metabolic disorders, neurodegenerative diseases, and infections, including tuberculosis. The biological basis for the essentiality of NAD(P) in most settings, however, remains experimentally unexplained. Here, we report that inactivation of the terminal enzyme of NAD synthesis, NAD synthetase (NadE), elicits markedly different metabolic and microbiologic effects than those of the terminal enzyme of NADP biosynthesis, NAD kinase (PpnK), in Mycobacterium tuberculosis (Mtb). Inactivation of NadE led to parallel reductions of both NAD and NADP pools and Mtb viability, while inactivation of PpnK selectively depleted NADP pools but only arrested growth. Inactivation of each enzyme was accompanied by metabolic changes that were specific for the affected enzyme and associated microbiological phenotype. Bacteriostatic levels of NAD depletion caused a compensatory remodeling of NAD-dependent metabolic pathways in the absence of an impact on NADH/NAD ratios, while bactericidal levels of NAD depletion resulted in a disruption of NADH/NAD ratios and inhibition of oxygen respiration. These findings reveal a previously unrecognized physiologic specificity associated with the essentiality of two evolutionarily ubiquitous cofactors. IMPORTANCE The current course for cure of Mycobacterium tuberculosis (Mtb)-the etiologic agent of tuberculosis (TB)-infections is lengthy and requires multiple antibiotics. The development of shorter, simpler treatment regimens is, therefore, critical to the goal of eradicating TB. NadE, an enzyme required for the synthesis of the ubiquitous cofactor NAD, is essential for survival of Mtb and regarded as a promising drug target. However, the basis of this essentiality was not clear due to its role in the synthesis of both NAD and NADP. Here, we resolve this ambiguity through a combination of gene silencing and metabolomics. We specifically show that NADP deficiency is bacteriostatic, while NAD deficiency is bactericidal due to its role in Mtb's respiratory capacity. These results argue for a prioritization of NAD biosynthesis inhibitors in anti-TB drug development.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , NAD/metabolismo , NADP/metabolismo , Ligases/metabolismo
6.
Nat Commun ; 12(1): 6593, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34782606

RESUMO

The human pathogen Mycobacterium tuberculosis depends on host fatty acids as a carbon source. However, fatty acid ß-oxidation is mediated by redundant enzymes, which hampers the development of antitubercular drugs targeting this pathway. Here, we show that rv0338c, which we refer to as etfD, encodes a membrane oxidoreductase essential for ß-oxidation in M. tuberculosis. An etfD deletion mutant is incapable of growing on fatty acids or cholesterol, with long-chain fatty acids being bactericidal, and fails to grow and survive in mice. Analysis of the mutant's metabolome reveals a block in ß-oxidation at the step catalyzed by acyl-CoA dehydrogenases (ACADs), which in other organisms are functionally dependent on an electron transfer flavoprotein (ETF) and its cognate oxidoreductase. We use immunoprecipitation to show that M. tuberculosis EtfD interacts with FixA (EtfB), a protein that is homologous to the human ETF subunit ß and is encoded in an operon with fixB, encoding a homologue of human ETF subunit α. We thus refer to FixA and FixB as EtfB and EtfA, respectively. Our results indicate that EtfBA and EtfD (which is not homologous to human EtfD) function as the ETF and oxidoreductase for ß-oxidation in M. tuberculosis and support this pathway as a potential target for tuberculosis drug development.


Assuntos
Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Deficiência Múltipla de Acil Coenzima A Desidrogenase/metabolismo , Mycobacterium tuberculosis/metabolismo , Acil-CoA Desidrogenases/metabolismo , Animais , Modelos Animais de Doenças , Metabolismo Energético , Ácidos Graxos/metabolismo , Feminino , Redes e Vias Metabólicas/genética , Redes e Vias Metabólicas/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Óperon , Oxirredução , Oxirredutases/metabolismo , Tuberculose
7.
Nat Commun ; 10(1): 4970, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31672993

RESUMO

The viability of Mycobacterium tuberculosis (Mtb) depends on energy generated by its respiratory chain. Cytochrome bc1-aa3 oxidase and type-2 NADH dehydrogenase (NDH-2) are respiratory chain components predicted to be essential, and are currently targeted for drug development. Here we demonstrate that an Mtb cytochrome bc1-aa3 oxidase deletion mutant is viable and only partially attenuated in mice. Moreover, treatment of Mtb-infected marmosets with a cytochrome bc1-aa3 oxidase inhibitor controls disease progression and reduces lesion-associated inflammation, but most lesions become cavitary. Deletion of both NDH-2 encoding genes (Δndh-2 mutant) reveals that the essentiality of NDH-2 as shown in standard growth media is due to the presence of fatty acids. The Δndh-2 mutant is only mildly attenuated in mice and not differently susceptible to clofazimine, a drug in clinical use proposed to engage NDH-2. These results demonstrate the intrinsic plasticity of Mtb's respiratory chain, and highlight the challenges associated with targeting the pathogen's respiratory enzymes for tuberculosis drug development.


Assuntos
Antituberculosos/uso terapêutico , Desenvolvimento de Medicamentos , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Mycobacterium tuberculosis/genética , NADH Desidrogenase/genética , Tuberculose/tratamento farmacológico , Adaptação Fisiológica/genética , Animais , Callithrix , Transporte de Elétrons , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Técnicas de Silenciamento de Genes , Imidazóis/farmacologia , Técnicas In Vitro , Pulmão/efeitos dos fármacos , Pulmão/patologia , Camundongos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , NADH Desidrogenase/antagonistas & inibidores , Piperidinas/farmacologia , Piridinas/farmacologia , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/patologia
8.
Front Microbiol ; 6: 906, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26441855

RESUMO

The increased number of bacterial genome sequencing projects has generated over the last years a large reservoir of genomic information. In silico analysis of this genomic data has renewed the interest in bacterial bioprospecting for bioactive compounds by unveiling novel biosynthetic gene clusters of unknown or uncharacterized metabolites. However, only a small fraction of those metabolites is produced under laboratory-controlled conditions; the remaining clusters represent a pool of novel metabolites that are waiting to be "awaken". Activation of the biosynthetic gene clusters that present reduced or no expression (known as cryptic or silent clusters) by heterologous expression has emerged as a strategy for the identification and production of novel bioactive molecules. Synthetic biology, with engineering principles at its core, provides an excellent framework for the development of efficient heterologous systems for the expression of biosynthetic gene clusters. However, a common problem in its application is the host-interference problem, i.e., the unpredictable interactions between the device and the host that can hamper the desired output. Although an effort has been made to develop orthogonal devices, the most proficient way to overcome the host-interference problem is through genome simplification. In this review we present an overview on the strategies and tools used in the development of hosts/chassis for the heterologous expression of specialized metabolites biosynthetic gene clusters. Finally, we introduce the concept of specialized host as the next step of development of expression hosts.

9.
Sci Rep ; 5: 12887, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26256439

RESUMO

Streptomyces are aerobic Gram-positive bacteria characterized by a complex life cycle that includes hyphae differentiation and spore formation. Morphological differentiation is triggered by stressful conditions and takes place in a pro-oxidant environment, which sets the basis for an involvement of the oxidative stress response in this cellular process. Characterization of the phenotypic traits of Streptomyces natalensis ΔkatA1 (mono-functional catalase) and ΔcatR (Fur-like repressor of katA1 expression) strains in solid medium revealed that both mutants had an impaired morphological development process. The sub-lethal oxidative stress caused by the absence of KatA1 resulted in the formation of a highly proliferative and undifferentiated vegetative mycelium, whereas de-repression of CatR regulon, from which KatA1 is the only known representative, resulted in the formation of scarce aerial mycelium. Both mutant strains had the transcription of genes associated with aerial mycelium formation and biosynthesis of the hyphae hydrophobic layer down-regulated. The first round of the programmed cell death (PCD) was inhibited in both strains which caused the prevalence of the transient primary mycelium (MI) over secondary mycelium (MII). Our data shows that the first round of PCD and morphological differentiation in S. natalensis is dependent on oxidative stress in the right amount at the right time.


Assuntos
Apoptose , Estresse Oxidativo , Streptomyces/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Catalase/genética , Catalase/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Eletroforese em Gel Bidimensional , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala , Viabilidade Microbiana , Microscopia Confocal , Micélio/metabolismo , Estresse Oxidativo/genética , Reação em Cadeia da Polimerase , Proteoma/análise , Esporos Bacterianos , Streptomyces/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
PLoS One ; 6(11): e27472, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22114674

RESUMO

Streptomyces secondary metabolism is strongly affected by oxygen availability. The increased culture aeration enhances pimaricin production in S. natalensis, however the excess of O(2) consumption can lead to an intracellular ROS imbalance that is harmful to the cell. The adaptive physiological response of S. natalensis upon the addition of exogenous H(2)O(2) suggested that the modulation of the intracellular ROS levels, through the activation of the H(2)O(2) inducible catalase during the late exponential growth phase, can alter the production of pimaricin. With the construction of defective mutants on the H(2)O(2) related enzymes SodF, AhpCD and KatA1, an effective and enduring modulation of intracellular ROS was achieved. Characterization of the knock-out strains revealed different behaviours regarding pimaricin production: whilst the superoxide dismutase defective mutant presented low levels of pimaricin production compared to the wild-type, the mutants defective on the H(2)O(2)-detoxifying enzymes displayed a pimaricin overproducer phenotype. Using physiological and molecular approaches we report a crosstalk between oxidative stress and secondary metabolism regulatory networks. Our results reveal that the redox-based regulation network triggered by an imbalance of the intracellular ROS homeostasis is also able to modulate the biosynthesis of pimaricin in S. natalensis.


Assuntos
Homeostase , Peróxido de Hidrogênio/farmacologia , Natamicina/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Streptomyces/efeitos dos fármacos , Streptomyces/metabolismo , Catalase/metabolismo , Eletroforese em Gel Bidimensional , Dados de Sequência Molecular , Oxidantes/farmacologia , Oxirredução , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA