Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Neurochem ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39135362

RESUMO

The strongest genetic risk factor for late-onset Alzheimer's disease (AD) is allelic variation of the APOE gene, with the following risk structure: ε4 > ε3 > ε2. The biochemical basis for this risk profile is unclear. Here, we reveal a new role for the APOE gene product, apolipoprotein E (ApoE) in regulating cellular copper homeostasis, which is perturbed in the AD brain. Exposure of ApoE target replacement (TR) astrocytes (immortalised astrocytes from APOE knock-in mice) to elevated copper concentrations resulted in exacerbated copper accumulation in ApoE4- compared to ApoE2- and ApoE3-TR astrocytes. This effect was also observed in SH-SY5Y neuroblastoma cells treated with conditioned medium from ApoE4-TR astrocytes. Increased intracellular copper levels in the presence of ApoE4 may be explained by reduced levels and delayed trafficking of the copper transport protein, copper-transporting ATPase 1 (ATP7A/Atp7a), potentially leading to impaired cellular copper export. This new role for ApoE in copper regulation lends further biochemical insight into how APOE genotype confers risk for AD and reveals a potential contribution of ApoE4 to the copper dysregulation that is a characteristic pathological feature of the AD brain.

2.
Mov Disord ; 37(5): 993-1003, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35137973

RESUMO

BACKGROUND: Neuroinflammation is implicated in the pathophysiology of Parkinson's disease (PD) and related conditions, yet prior clinical biomarker data report mixed findings. OBJECTIVES: The aim was to measure a panel of neuroinflammatory acute phase response (APR) proteins in the cerebrospinal fluid (CSF) of participants with PD and related disorders. METHODS: Eleven APR proteins were measured in the CSF of 867 participants from the BioFINDER cohort who were healthy (612) or had a diagnosis of PD (155), multiple system atrophy (MSA) (26), progressive supranuclear palsy (PSP) (22), dementia with Lewy bodies (DLB) (23), or Parkinson's disease with dementia (PDD) (29). RESULTS: CSF APR proteins were mostly unchanged in PD, with only haptoglobin and α1-antitrypsin significantly elevated compared to controls. These proteins were variably increased in the other disorders. Certain protein components yielded unique signatures according to diagnosis: ferritin and transthyretin were selectively elevated in MSA and discriminated these patients from all others. Haptoglobin was selectively increased in PSP, discriminating this disease from MSA when used in combination with ferritin and transthyretin. This panel of proteins did not correlate well with severity of motor impairment in any disease category, but several (particularly ceruloplasmin and ferritin) were associated with memory performance (Mini-Mental State Examination) in patients with DLB and PDD. CONCLUSIONS: These findings provide new insights into inflammatory changes in PD and related disorders while also introducing biomarkers of potential clinical diagnostic utility. © 2022 International Parkinson and Movement Disorder Society.


Assuntos
Doença de Alzheimer , Atrofia de Múltiplos Sistemas , Doença de Parkinson , Transtornos Parkinsonianos , Paralisia Supranuclear Progressiva , Reação de Fase Aguda/complicações , Reação de Fase Aguda/diagnóstico , Doença de Alzheimer/complicações , Biomarcadores/líquido cefalorraquidiano , Diagnóstico Diferencial , Ferritinas , Haptoglobinas/metabolismo , Humanos , Atrofia de Múltiplos Sistemas/diagnóstico , Doença de Parkinson/diagnóstico , Transtornos Parkinsonianos/complicações , Pré-Albumina/metabolismo , Paralisia Supranuclear Progressiva/diagnóstico
3.
Int J Mol Sci ; 23(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36555849

RESUMO

Dysregulated brain-derived neurotrophic factor (BDNF)/tropomyosin receptor kinase B (TrkB) signalling is implicated in several neurodegenerative diseases, including Alzheimer's disease. A failure of neurotrophic support may participate in neurodegenerative mechanisms, such as ferroptosis, which has likewise been implicated in this disease class. The current study investigated whether modulators of TrkB signalling affect ferroptosis. Cell viability, C11 BODIPY, and cell-free oxidation assays were used to observe the impact of TrkB modulators, and an immunoblot assay was used to detect TrkB expression. TrkB modulators such as agonist BDNF, antagonist ANA-12, and inhibitor K252a did not affect RSL3-induced ferroptosis sensitivity in primary cortical neurons expressing detectable TrkB receptors. Several other modulators of the TrkB receptor, including agonist 7,8-DHF, activator phenelzine sulphate, and inhibitor GNF-5837, conferred protection against a range of ferroptosis inducers in several immortalised neuronal and non-neuronal cell lines, such as N27 and HT-1080 cells. We found these immortalised cell lines lack detectable TrkB receptor expression, so the anti-ferroptotic activity of these TrkB modulators was most likely due to their inherent radical-trapping antioxidant properties, which should be considered when interpreting their experimental findings. These modulators or their variants could be potential anti-ferroptotic therapeutics for various diseases.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Receptor trkB , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Receptor trkB/metabolismo , Transdução de Sinais , Neurônios/metabolismo , Sobrevivência Celular
4.
J Neurochem ; 139 Suppl 1: 179-197, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26545340

RESUMO

Brain iron homeostasis is increasingly recognized as a potential target for the development of drug therapies for aging-related disorders. Dysregulation of iron metabolism associated with cellular damage and oxidative stress is reported as a common event in several neurodegenerative disorders such as Alzheimer's, Parkinson's, and Huntington's diseases. Indeed, many proteins initially characterized in those diseases such as amyloid-ß protein, α-synuclein, and huntingtin have been linked to iron neurochemistry. Iron plays a crucial role in maintaining normal physiological functions in the brain through its participation in many cellular functions such as mitochondrial respiration, myelin synthesis, and neurotransmitter synthesis and metabolism. However, excess iron is a potent source of oxidative damage through radical formation and because of the lack of a body-wide export system, a tight regulation of its uptake, transport and storage is crucial in fulfilling cellular functions while keeping its level below the toxicity threshold. In this review, we discuss the current knowledge on iron homeostasis in the brain and explore how alterations in brain iron metabolism affect neuronal function with emphasis on iron dysregulation in Alzheimer's and Parkinson's diseases. Finally, we discuss recent findings implicating iron as a diagnostic and therapeutic target for Alzheimer's and Parkinson's diseases. Iron plays a fundamental role in maintaining the high metabolic and energetic requirements of the brain. However, iron has to be maintained in a delicate balance as both iron overload and iron deficiency are detrimental to the brain and can trigger neurodegeneration. Here, we discuss the current knowledge on brain iron homeostasis and its involvement in major aging-related neurodegenerative diseases. This article is part of a special issue on Parkinson disease.


Assuntos
Doença de Alzheimer/metabolismo , Química Encefálica/fisiologia , Sistemas de Liberação de Medicamentos , Ferro/metabolismo , Doença de Parkinson/metabolismo , Doença de Alzheimer/terapia , Animais , Homeostase/fisiologia , Humanos , Ferro/química , Doença de Parkinson/terapia
5.
Lancet ; 386(10007): 1955-1963, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-26343839

RESUMO

BACKGROUND: Molybdenum cofactor deficiency (MoCD) is characterised by early, rapidly progressive postnatal encephalopathy and intractable seizures, leading to severe disability and early death. Previous treatment attempts have been unsuccessful. After a pioneering single treatment we now report the outcome of the complete first cohort of patients receiving substitution treatment with cyclic pyranopterin monophosphate (cPMP), a biosynthetic precursor of the cofactor. METHODS: In this observational prospective cohort study, newborn babies with clinical and biochemical evidence of MoCD were admitted to a compassionate-use programme at the request of their treating physicians. Intravenous cPMP (80-320 µg/kg per day) was started in neonates diagnosed with MoCD (type A and type B) following a standardised protocol. We prospectively monitored safety and efficacy in all patients exposed to cPMP. FINDINGS: Between June 6, 2008, and Jan 9, 2013, intravenous cPMP was started in 16 neonates diagnosed with MoCD (11 type A and five type B) and continued in eight type A patients for up to 5 years. We observed no drug-related serious adverse events after more than 6000 doses. The disease biomarkers urinary S-sulphocysteine, xanthine, and urate returned to almost normal concentrations in all type A patients within 2 days, and remained normal for up to 5 years on continued cPMP substitution. Eight patients with type A disease rapidly improved under treatment and convulsions were either completely suppressed or substantially reduced. Three patients treated early remain seizure free and show near-normal long-term development. We detected no biochemical or clinical response in patients with type B disease. INTERPRETATION: cPMP substitution is the first effective therapy for patients with MoCD type A and has a favourable safety profile. Restoration of molybdenum cofactor-dependent enzyme activities results in a greatly improved neurodevelopmental outcome when started sufficiently early. The possibility of MoCD type A needs to be urgently explored in every encephalopathic neonate to avoid any delay in appropriate cPMP substitution, and to maximise treatment benefit. FUNDING: German Ministry of Education and Research; Orphatec/Colbourne Pharmaceuticals.


Assuntos
Erros Inatos do Metabolismo dos Metais/tratamento farmacológico , Compostos Organofosforados/uso terapêutico , Pterinas/uso terapêutico , Estudos de Coortes , Ensaios de Uso Compassivo , Esquema de Medicação , Feminino , Humanos , Recém-Nascido , Masculino , Erros Inatos do Metabolismo dos Metais/diagnóstico , Resultado do Tratamento
6.
Biochem J ; 469(2): 211-21, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26171830

RESUMO

Mammalian sulfite oxidase (SO) is a dimeric enzyme consisting of a molybdenum cofactor- (Moco) and haem-containing domain and catalyses the oxidation of toxic sulfite to sulfate. Following sulfite oxidation, electrons are passed from Moco via the haem cofactor to cytochrome c, the terminal electron acceptor. In contrast, plant SO (PSO) lacks the haem domain and electrons shuttle from Moco to molecular oxygen. Given the high similarity between plant and mammalian SO Moco domains, factors that determine the reactivity of PSO towards oxygen, remained unknown. In the present study, we generated mammalian haem-deficient and truncated SO variants and demonstrated their oxygen reactivity by hydrogen peroxide formation and oxygen-consumption studies. We found that intramolecular electron transfer between Moco and haem showed an inverse correlation to SO oxygen reactivity. Haem-deficient SO variants exhibited oxygen-dependent sulfite oxidation similar to PSO, which was confirmed further using haem-deficient human SO in a cell-based assay. This finding suggests the possibility to use oxygen-reactive SO variants in sulfite detoxification, as the loss of SO activity is causing severe neurodegeneration. Therefore we evaluated the potential use of PEG attachment (PEGylation) as a modification method for future enzyme substitution therapies using oxygen-reactive SO variants, which might use blood-dissolved oxygen as the electron acceptor. PEGylation has been shown to increase the half-life of other therapeutic proteins. PEGylation resulted in the modification of up to eight surface-exposed lysine residues of SO, an increased conformational stability and similar kinetic properties compared with wild-type SO.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/tratamento farmacológico , Terapia de Reposição de Enzimas , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Oxigênio , Sulfito Oxidase/deficiência , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Animais , Estabilidade Enzimática/genética , Células HEK293 , Heme/química , Heme/genética , Heme/metabolismo , Humanos , Peróxido de Hidrogênio , Camundongos , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/química , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/uso terapêutico , Oxigênio/química , Oxigênio/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Polietilenoglicóis/química , Sulfito Oxidase/genética , Sulfito Oxidase/metabolismo
7.
Amino Acids ; 47(1): 55-63, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25261132

RESUMO

Sulfur metabolism has gained increasing medical interest over the last years. In particular, cysteine dioxygenase (CDO) has been recognized as a potential marker in oncology due to its altered gene expression in various cancer types. Human CDO is a non-heme iron-dependent enzyme, which catalyzes the irreversible oxidation of cysteine to cysteine sulfinic acid, which is further metabolized to taurine or pyruvate and sulfate. Several studies have reported a unique post-translational modification of human CDO consisting of a cross-link between cysteine 93 and tyrosine 157 (Cys-Tyr), which increases catalytic efficiency in a substrate-dependent manner. However, the reaction mechanism by which the Cys-Tyr cofactor increases catalytic efficiency remains unclear. In this study, steady-state kinetics were determined for wild type CDO and two different variants being either impaired or saturated with the Cys-Tyr cofactor. Cofactor formation in CDO resulted in an approximately fivefold increase in k cat and tenfold increase in k cat/K m over the cofactor-free CDO variant. Furthermore, iron titration experiments revealed an 18-fold decrease in K d of iron upon cross-link formation. This finding suggests a structural role of the Cys-Tyr cofactor in coordinating the ferrous iron in the active site of CDO in accordance with the previously postulated reaction mechanism of human CDO. Finally, we identified product-based inhibition and α-ketoglutarate and glutarate as CDO inhibitors using a simplified well plate-based activity assay. This assay can be used for high-throughput identification of additional inhibitors, which may contribute to understand the functional importance of CDO in sulfur amino acid metabolism and related diseases.


Assuntos
Coenzimas/metabolismo , Cisteína Dioxigenase/química , Cisteína Dioxigenase/metabolismo , Dipeptídeos/metabolismo , Ferro/metabolismo , Domínio Catalítico , Coenzimas/química , Cisteína Dioxigenase/genética , Dipeptídeos/química , Humanos , Cinética , Oxirredução , Ligação Proteica
8.
Neurobiol Dis ; 67: 88-96, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24561070

RESUMO

Gephyrin is a postsynaptic scaffolding protein, essential for the clustering of glycine and γ-aminobutyric acid type-A receptors (GABAARs) at inhibitory synapses. An impairment of GABAergic synaptic inhibition represents a key pathway of epileptogenesis. Recently, exonic microdeletions in the gephyrin (GPHN) gene have been associated with neurodevelopmental disorders including autism spectrum disorder, schizophrenia and epileptic seizures. Here we report the identification of novel exonic GPHN microdeletions in two patients with idiopathic generalized epilepsy (IGE), representing the most common group of genetically determined epilepsies. The identified GPHN microdeletions involve exons 5-9 (Δ5-9) and 2-3 (Δ2-3), both affecting the gephyrin G-domain. Molecular characterization of the GPHN Δ5-9 variant demonstrated that it perturbs the clustering of regular gephyrin at inhibitory synapses in cultured mouse hippocampal neurons in a dominant-negative manner, resulting in a significant loss of γ2-subunit containing GABAARs. GPHN Δ2-3 causes a frameshift resulting in a premature stop codon (p.V22Gfs*7) leading to haplo-insufficiency of the gene. Our results demonstrate that structural exonic microdeletions affecting the GPHN gene constitute a rare genetic risk factor for IGE and other neuropsychiatric disorders by an impairment of the GABAergic inhibitory synaptic transmission.


Assuntos
Proteínas de Transporte/genética , Epilepsia Generalizada/genética , Éxons/genética , Neurônios GABAérgicos/metabolismo , Proteínas de Membrana/genética , Deleção de Sequência , Sinapses/metabolismo , Adulto , Feminino , Humanos , Masculino , Linhagem , RNA Mensageiro/metabolismo , Fatores de Risco , Adulto Jovem
9.
Biochem J ; 450(1): 149-57, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23163752

RESUMO

The complexity of eukaryotic multicellular organisms relies on evolutionary developments that include compartmentalization, alternative splicing, protein domain fusion and post-translational modification. Mammalian gephyrin uniquely exemplifies these processes by combining two enzymatic functions within the biosynthesis of the Moco (molybdenum cofactor) in a multidomain protein. It also undergoes extensive alternative splicing, especially in neurons, where it also functions as a scaffold protein at inhibitory synapses. Two out of three gephyrin domains are homologous to bacterial Moco-synthetic proteins (G and E domain) while being fused by a third gephyrin-specific central C domain. In the present paper, we have established the in vitro Moco synthesis using purified components and demonstrated an over 300-fold increase in Moco synthesis for gephyrin compared with the isolated G domain, which synthesizes adenylylated molybdopterin, and E domain, which catalyses the metal insertion at physiological molybdate concentrations in an ATP-dependent manner. We show that the C domain impacts the catalytic efficacy of gephyrin, suggesting an important structural role in product-substrate channelling as depicted by a structural model that is in line with a face-to-face orientation of both active sites. Our functional studies demonstrate the evolutionary advantage of domain fusion in metabolic proteins, which can lead to the development of novel functions in higher eukaryotes.


Assuntos
Proteínas de Transporte/química , Coenzimas/química , Proteínas de Membrana/química , Metaloproteínas/química , Molibdênio/química , Pteridinas/química , Processamento Alternativo , Apoproteínas/química , Apoproteínas/genética , Apoproteínas/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Coenzimas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Metaloproteínas/metabolismo , Molibdênio/metabolismo , Cofatores de Molibdênio , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Pteridinas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
10.
Mol Neurodegener ; 19(1): 14, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317225

RESUMO

BACKGROUND: Ferroptosis is a form of regulated cell death characterised by lipid peroxidation as the terminal endpoint and a requirement for iron. Although it protects against cancer and infection, ferroptosis is also implicated in causing neuronal death in degenerative diseases of the central nervous system (CNS). The precise role for ferroptosis in causing neuronal death is yet to be fully resolved. METHODS: To elucidate the role of ferroptosis in neuronal death we utilised co-culture and conditioned medium transfer experiments involving microglia, astrocytes and neurones. We ratified clinical significance of our cell culture findings via assessment of human CNS tissue from cases of the fatal, paralysing neurodegenerative condition of amyotrophic lateral sclerosis (ALS). We utilised the SOD1G37R mouse model of ALS and a CNS-permeant ferroptosis inhibitor to verify pharmacological significance in vivo. RESULTS: We found that sublethal ferroptotic stress selectively affecting microglia triggers an inflammatory cascade that results in non-cell autonomous neuronal death. Central to this cascade is the conversion of astrocytes to a neurotoxic state. We show that spinal cord tissue from human cases of ALS exhibits a signature of ferroptosis that encompasses atomic, molecular and biochemical features. Further, we show the molecular correlation between ferroptosis and neurotoxic astrocytes evident in human ALS-affected spinal cord is recapitulated in the SOD1G37R mouse model where treatment with a CNS-permeant ferroptosis inhibitor, CuII(atsm), ameliorated these markers and was neuroprotective. CONCLUSIONS: By showing that microglia responding to sublethal ferroptotic stress culminates in non-cell autonomous neuronal death, our results implicate microglial ferroptotic stress as a rectifiable cause of neuronal death in neurodegenerative disease. As ferroptosis is currently primarily regarded as an intrinsic cell death phenomenon, these results introduce an entirely new pathophysiological role for ferroptosis in disease.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Camundongos , Animais , Humanos , Microglia/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Superóxido Dismutase-1/metabolismo , Doenças Neurodegenerativas/metabolismo , Morte Celular , Modelos Animais de Doenças
11.
Biomed Pharmacother ; 164: 114930, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37236031

RESUMO

Vitamin A (retinol) is a lipid-soluble vitamin that acts as a precursor for several bioactive compounds, such as retinaldehyde (retinal) and isomers of retinoic acid. Retinol and all-trans-retinoic acid (atRA) penetrate the blood-brain barrier and are reported to be neuroprotective in several animal models. We characterised the impact of retinol and its metabolites, all-trans-retinal (atRAL) and atRA, on ferroptosis-a programmed cell death caused by iron-dependent phospholipid peroxidation. Ferroptosis was induced by erastin, buthionine sulfoximine or RSL3 in neuronal and non-neuronal cell lines. We found that retinol, atRAL and atRA inhibited ferroptosis with a potency superior to α-tocopherol, the canonical anti-ferroptotic vitamin. In contrast, we found that antagonism of endogenous retinol with anhydroretinol sensitises ferroptosis induced in neuronal and non-neuronal cell lines. Retinol and its metabolites atRAL and atRA directly interdict lipid radicals in ferroptosis since these compounds displayed radical trapping properties in a cell-free assay. Vitamin A, therefore, complements other anti-ferroptotic vitamins, E and K; metabolites of vitamin A, or agents that alter their levels, may be potential therapeutics for diseases where ferroptosis is implicated.


Assuntos
Ferroptose , Vitamina A , Animais , Vitamina A/farmacologia , Peroxidação de Lipídeos/fisiologia , Tretinoína/farmacologia , Vitaminas , Retinaldeído , Lipídeos
12.
Prog Neurobiol ; 198: 101904, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32882319

RESUMO

It is unknown how neuroinflammation may feature in the etiology of Alzheimer's disease (AD). We profiled acute phase response (APR) proteins (α1-antitrypsin, α1-antichymotrypsin, ceruloplasmin, complement C3, ferritin, α-fibrinogen, ß-fibrinogen, γ-fibrinogen, haptoglobin, hemopexin) in CSF of 1291 subjects along the clinical and biomarker spectrum of AD to investigate the association between inflammatory changes, disease outcomes, and demographic variables. Subjects were stratified by Aß42/t-tau as well as the following clinical diagnoses: cognitively normal (CN); subjective cognitive decline (SCD); mild cognitive impairment (MCI); and AD dementia. In separate multiple regressions (adjusting for diagnosis, age, sex, APOE-ε4) of each APR protein and a composite of all APR proteins, CSF Aß42/t-tau status was associated with elevated ferritin, but not any other APR protein in CN and SCD subjects. Rather, the APR was elevated along with symptomatic progression (CN < SCD < MCI < AD), and this was elevation was mediated by CSF p-tau181. APOE ε4 status did not affect levels of any APR proteins in CSF, while these were elevated in males and with increased age. The performance of the APR in predicting clinical diagnosis was influenced by APOE ε4 status, sex, and age. These data provide new insight into inflammatory changes in AD and how this intersects with pathology changes and patient demographics.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/genética , Peptídeos beta-Amiloides , Apolipoproteína E4/genética , Biomarcadores , Disfunção Cognitiva/genética , Ferritinas , Fibrinogênio , Humanos , Masculino , Doenças Neuroinflamatórias , Fragmentos de Peptídeos , Proteínas tau
13.
Br J Pharmacol ; 177(3): 656-667, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31655003

RESUMO

BACKGROUND AND PURPOSE: Diacetyl-bis(4-methyl-3-thiosemicarbazonato)copperII (CuII (atsm)) ameliorates neurodegeneration and delays disease progression in mouse models of amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD), yet the mechanism of action remains uncertain. Promising results were recently reported for separate Phase 1 studies in ALS patients and PD patients. Affected tissue in these disorders shares features of elevated Fe, low glutathione and increased lipid peroxidation consistent with ferroptosis, a novel form of regulated cell death. We therefore evaluated the ability of CuII (atsm) to inhibit ferroptosis. EXPERIMENTAL APPROACH: Ferroptosis was induced in neuronal cell models by inhibition of glutathione peroxidase-4 activity with RSL3 or by blocking cystine uptake with erastin. Cell viability and lipid peroxidation were assessed and the efficacy of CuII (atsm) was compared to the known antiferroptotic compound liproxstatin-1. KEY RESULTS: CuII (atsm) protected against lipid peroxidation and ferroptotic lethality in primary and immortalised neuronal cell models (EC50 : ≈130 nM, within an order of magnitude of liproxstatin-1). NiII (atsm) also prevented ferroptosis with similar potency, whereas ionic CuII did not. In cell-free systems, CuII (atsm) and NiII (atsm) inhibited FeII -induced lipid peroxidation, consistent with these compounds quenching lipid radicals. CONCLUSIONS AND IMPLICATIONS: The antiferroptotic activity of CuII (atsm) could therefore be the disease-modifying mechanism being tested in ALS and PD trials. With potency in vitro approaching that of liproxstatin-1, CuII (atsm) possesses favourable properties such as oral bioavailability and entry into the brain that make it an attractive investigational product for clinical trials of ferroptosis-related diseases.


Assuntos
Esclerose Lateral Amiotrófica , Ferroptose , Doenças Neurodegenerativas , Compostos Organometálicos , Tiossemicarbazonas , Animais , Modelos Animais de Doenças , Humanos , Peroxidação de Lipídeos , Camundongos , Doenças Neurodegenerativas/tratamento farmacológico , Tiossemicarbazonas/farmacologia
14.
Neurotherapeutics ; 15(4): 1055-1062, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30112699

RESUMO

Proteolytic cleavage of the amyloid precursor protein (APP) into the Aß peptide has been an extensively researched mechanism for Alzheimer's disease, but the normal function of the protein is less understood. APP functions to regulate neuronal iron content by stabilizing the surface presentation of ferroportin-the only iron exporter channel of cells. The present study aims to quantify the contribution of APP to brain and peripheral iron by examining the lifetime impact on brain and liver iron levels in APP knockout mice. Consistent with previous reports, we found that wild-type mice exhibited an age-dependent increase in iron and ferritin in the brain, while no age-dependent changes were observed in the liver. APP ablation resulted in an exaggeration of age-dependent iron accumulation in the brain and liver in mice that was assessed at 8, 12, 18, and 22 months of age. Brain ferroportin levels were decreased in APP knockout mice, consistent with a mechanistic role for APP in stabilizing this iron export protein in the brain. Iron elevation in the brain and liver of APP knockout mice correlated with decreased transferrin receptor 1 and increased ferritin protein levels. However, no age-dependent increase in brain ferritin iron saturation was observed in APP-KO mice despite similar protein expression levels potentially explaining the vulnerability of APP-KO mice to parkinsonism and traumatic brain sequelae. Our results support a crucial role of APP in regulating brain and peripheral iron, and show that APP may act to oppose brain iron elevation during aging.


Assuntos
Envelhecimento/patologia , Precursor de Proteína beta-Amiloide/deficiência , Encéfalo/metabolismo , Ferro/metabolismo , Fígado/metabolismo , Fatores Etários , Precursor de Proteína beta-Amiloide/genética , Animais , Ferritinas/metabolismo , Camundongos , Camundongos Knockout
15.
J Phys Chem B ; 121(39): 9149-9159, 2017 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-28872871

RESUMO

Direct electrochemistry of human sulfite oxidase (HSO) has been achieved on carboxylate-terminated self-assembled monolayers cast on a Au working electrode in the presence of the promoter chitosan. The modified electrode facilitates a well-defined nonturnover redox response from the heme cofactor (FeIII/II) in 750 mM Tris, MOPS, and bicine buffer solutions. The formal redox potential of the nonturnover response varies slightly depending on the nature of the thiol monolayer on the Au electrode. Upon addition of sulfite to the cell a pronounced catalytic current from HSO-facilitated sulfite oxidation is observed. The measured catalytic rate constant (kcat) is around 0.2 s-1 (compared with 26 s-1 obtained from solution assays), which indicates that interaction of the enzyme with the electrode lowers overall catalysis although native behavior is retained in terms of substrate concentration dependence, pH dependence, and inhibition effects. In contrast, no catalytic activity is observed when HSO is confined to amine-terminated thiol monolayers although well-defined noncatalytic responses from the heme cofactor are still observed. These differences are linked to flexibility of HSO, which can switch between active and inactive conformations, and also competitive ion exchange processes at the electrode surface involving the enzyme and substrate.


Assuntos
Quitosana/química , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/química , Eletroquímica , Eletrodos , Ouro/química , Humanos , Concentração de Íons de Hidrogênio , Oxirredução , Propriedades de Superfície
17.
Met Ions Life Sci ; 13: 415-50, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24470099

RESUMO

Molybdenum is an essential trace element and crucial for the survival of animals. Four mammalian Mo-dependent enzymes are known, all of them harboring a pterin-based molybdenum cofactor (Moco) in their active site. In these enzymes, molybdenum catalyzes oxygen transfer reactions from or to substrates using water as oxygen donor or acceptor. Molybdenum shuttles between two oxidation states, Mo(IV) and Mo(VI). Following substrate reduction or oxidation, electrons are subsequently shuttled by either inter- or intra-molecular electron transfer chains involving prosthetic groups such as heme or iron-sulfur clusters. In all organisms studied so far, Moco is synthesized by a highly conserved multi-step biosynthetic pathway. A deficiency in the biosynthesis of Moco results in a pleitropic loss of all four human Mo-enzyme activities and in most cases in early childhood death. In this review we first introduce general aspects of molybdenum biochemistry before we focus on the functions and deficiencies of two Mo-enzymes, xanthine dehydrogenase and sulfite oxidase, caused either by deficiency of the apo-protein or a pleiotropic loss of Moco due to a genetic defect in its biosynthesis. The underlying molecular basis of Moco deficiency, possible treatment options and links to other diseases, such as neuropsychiatric disorders, will be discussed.


Assuntos
Coenzimas/metabolismo , Erros Inatos do Metabolismo/metabolismo , Molibdênio/metabolismo , Sulfito Oxidase/metabolismo , Xantina Desidrogenase/deficiência , Xantina Desidrogenase/metabolismo , Humanos , Oligoelementos/metabolismo
18.
J Med Chem ; 56(4): 1730-8, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23384403

RESUMO

Cyclic pyranopterin monophosphate (1), isolated from bacterial culture, has previously been shown to be effective in restoring normal function of molybdenum enzymes in molybdenum cofactor (MoCo)-deficient mice and human patients. Described here is a synthesis of 1 hydrobromide (1·HBr) employing in the key step a Viscontini reaction between 2,5,6-triamino-3,4-dihydropyrimidin-4-one dihydrochloride and D-galactose phenylhydrazone to give the pyranopterin (5aS,6R,7R,8R,9aR)-2-amino-6,7-dihydroxy-8-(hydroxymethyl)-3H,4H,5H,5aH,6H,7H,8H,9aH,10H-pyrano[3,2-g]pteridin-4-one (10) and establishing all four stereocenters found in 1. Compound 10, characterized spectroscopically and by X-ray crystallography, was transformed through a selectively protected tri-tert-butoxycarbonylamino intermediate into a highly crystalline tetracyclic phosphate ester (15). The latter underwent a Swern oxidation and then deprotection to give 1·HBr. Synthesized 1·HBr had in vitro efficacy comparable to that of 1 of bacterial origin as demonstrated by its enzymatic conversion into mature MoCo and subsequent reconstitution of MoCo-free human sulfite oxidase-molybdenum domain yielding a fully active enzyme. The described synthesis has the potential for scale up.


Assuntos
Coenzimas/química , Metaloproteínas/química , Compostos Organofosforados/síntese química , Pteridinas/química , Pterinas/síntese química , Coenzimas/metabolismo , Escherichia coli/metabolismo , Humanos , Metaloproteínas/metabolismo , Cofatores de Molibdênio , Compostos Organofosforados/química , Pteridinas/metabolismo , Pterinas/química , Transdução de Sinais , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA