Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochim Biophys Acta Bioenerg ; 1858(11): 915-926, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28807731

RESUMO

Two electrogenic phases with characteristic times of ~14µs and ~290µs are resolved in the kinetics of membrane potential generation coupled to single-electron reduction of the oxidized "relaxed" O state of ba3 oxidase from T. thermophilus (O→E transition). The rapid phase reflects electron redistribution between CuA and heme b. The slow phase includes electron redistribution from both CuA and heme b to heme a3, and electrogenic proton transfer coupled to reduction of heme a3. The distance of proton translocation corresponds to uptake of a proton from the inner water phase into the binuclear center where heme a3 is reduced, but there is no proton pumping and no reduction of CuB. Single-electron reduction of the oxidized "unrelaxed" state (OH→EH transition) is accompanied by electrogenic reduction of the heme b/heme a3 pair by CuA in a "fast" phase (~22µs) and transfer of protons in "middle" and "slow" electrogenic phases (~0.185ms and ~0.78ms) coupled to electron redistribution from the heme b/heme a3 pair to the CuB site. The "middle" and "slow" electrogenic phases seem to be associated with transfer of protons to the proton-loading site (PLS) of the proton pump, but when all injected electrons reach CuB the electronic charge appears to be compensated by back-leakage of the protons from the PLS into the binuclear site. Thus proton pumping occurs only to the extent of ~0.1 H+/e-, probably due to the formed membrane potential in the experiment.


Assuntos
Proteínas de Bactérias/química , Grupo dos Citocromos b/química , Complexo IV da Cadeia de Transporte de Elétrons/química , Elétrons , Potenciais da Membrana/fisiologia , Prótons , Thermus thermophilus/química , Proteínas de Bactérias/isolamento & purificação , Cobre/química , Grupo dos Citocromos b/isolamento & purificação , Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons/isolamento & purificação , Heme/química , Cinética , Oxirredução , Oxigênio/química , Termodinâmica , Thermus thermophilus/enzimologia
2.
Biochim Biophys Acta ; 1857(2): 141-149, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26655930

RESUMO

Bacterial Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) uses a unique set of prosthetic redox groups-two covalently bound FMN residues, a [2Fe-2S] cluster, FAD, riboflavin and a Cys4[Fe] center-to catalyze electron transfer from NADH to ubiquinone in a reaction coupled with Na(+) translocation across the membrane. Here we used an ultra-fast microfluidic stopped-flow instrument to determine rate constants and the difference spectra for the six consecutive reaction steps of Vibrio harveyi Na(+)-NQR reduction by NADH. The instrument, with a dead time of 0.25 ms and optical path length of 1 cm allowed collection of visible spectra in 50-µs intervals. By comparing the spectra of reaction steps with the spectra of known redox transitions of individual enzyme cofactors, we were able to identify the chemical nature of most intermediates and the sequence of electron transfer events. A previously unknown spectral transition was detected and assigned to the Cys4[Fe] center reduction. Electron transfer from the [2Fe-2S] cluster to the Cys4[Fe] center and all subsequent steps were markedly accelerated when Na(+) concentration was increased from 20 µM to 25 mM, suggesting coupling of the former step with tight Na(+) binding to or occlusion by the enzyme. An alternating access mechanism was proposed to explain electron transfer between subunits NqrF and NqrC. According to the proposed mechanism, the Cys4[Fe] center is alternatively exposed to either side of the membrane, allowing the [2Fe-2S] cluster of NqrF and the FMN residue of NqrC to alternatively approach the Cys4[Fe] center from different sides of the membrane.


Assuntos
Proteínas de Bactérias/química , NAD(P)H Desidrogenase (Quinona)/química , Subunidades Proteicas/química , Sódio/química , Vibrio cholerae/enzimologia , Vibrio/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cátions Monovalentes , Clonagem Molecular , Transporte de Elétrons , Expressão Gênica , Transporte de Íons , Cinética , Técnicas Analíticas Microfluídicas , Modelos Moleculares , NAD/química , NAD/metabolismo , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , Oxirredução , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sódio/metabolismo , Ubiquinona/química , Ubiquinona/metabolismo , Vibrio/química , Vibrio/genética , Vibrio cholerae/química , Vibrio cholerae/genética
3.
Proc Natl Acad Sci U S A ; 107(43): 18469-74, 2010 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-20937896

RESUMO

Cytochrome c oxidase is the terminal enzyme of the respiratory chain that is responsible for biological energy conversion in mitochondria and aerobic bacteria. The membrane-bound enzyme converts free energy from oxygen reduction to an electrochemical proton gradient by functioning as a redox-coupled proton pump. Although the 3D structure and functional studies have revealed proton conducting pathways in the enzyme interior, the location of proton donor and acceptor groups are not fully identified. We show here by time-resolved optical and FTIR spectroscopy combined with time-resolved electrometry that some mutant enzymes incapable of proton pumping nevertheless initiate catalysis by proton transfer to a proton-loading site. A conserved tyrosine in the so-called D-channel is identified as a potential proton donor that determines the efficiency of this reaction.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fenômenos Biofísicos , Eletroquímica , Complexo IV da Cadeia de Transporte de Elétrons/genética , Cinética , Potenciais da Membrana , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Paracoccus denitrificans/enzimologia , Paracoccus denitrificans/genética , Espectrofotometria , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Biochim Biophys Acta ; 1807(9): 1162-9, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21609712

RESUMO

The oxidative part of the catalytic cycle of the caa(3)-type cytochrome c oxidase from Thermus thermophilus was followed by time-resolved optical spectroscopy. Rate constants, chemical nature and the spectral properties of the catalytic cycle intermediates (Compounds A, P, F) reproduce generally the features typical for the aa(3)-type oxidases with some distinctive peculiarities caused by the presence of an additional 5-th redox-center-a heme center of the covalently bound cytochrome c. Compound A was formed with significantly smaller yield compared to aa(3) oxidases in general and to ba(3) oxidase from the same organism. Two electrons, equilibrated between three input redox-centers: heme a, Cu(A) and heme c are transferred in a single transition to the binuclear center during reduction of the compound F, converting the binuclear center through the highly reactive O(H) state into the final product of the reaction-E(H) (one-electron reduced) state of the catalytic site. In contrast to previous works on the caa(3)-type enzymes, we concluded that the finally produced E(H) state of caa(3) oxidase is characterized by the localization of the fifth electron in the binuclear center, similar to the O(H)→E(H) transition of the aa(3)-type oxidases. So, the fully-reduced caa(3) oxidase is competent in rapid electron transfer from the input redox-centers into the catalytic heme-copper site.


Assuntos
Radical Hidroxila/metabolismo , Oxirredutases/metabolismo , Thermus thermophilus/enzimologia , Oxirredução , Análise Espectral/métodos
5.
Methods Enzymol ; 456: 75-93, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19348883

RESUMO

The investigation of the molecular mechanism of the respiratory chain complexes requires determination of the time-dependent evolution of the catalytic cycle intermediates. The ultra-fast freeze-quench approach makes possible trapping such intermediates with consequent analysis of their chemical structure by means of different physical spectroscopic methods (e.g., EPR, optic, and Mössbauer spectroscopies). This chapter presents the description of a setup that allows stopping the enzymatic reaction in the time range from 100 microsec to tens of msec. The construction and production technology of the mixer head, ultra-fast freezing device, and accessories required for collecting a sample are described. Ways of solving a number of problems emerging on freezing of the reaction mixture and preparing the samples for EPR spectroscopy are proposed. The kinetics of electron transfer reaction in the first enzyme of the respiratory chain, Complex I (NADH: ubiquinone oxidoreductase), is presented as an illustration of the freeze-quench approach. Time-resolved EPR spectra indicating the redox state of FeS clusters of the wild-type and mutant (R274A in subunit NuoCD) Complex I from Escherichia coli are shown.


Assuntos
Transporte de Elétrons , Congelamento , Biocatálise , Espectroscopia de Ressonância de Spin Eletrônica , Cinética
6.
J Biol Chem ; 284(9): 5533-8, 2009 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-19117949

RESUMO

The Na(+)-translocating NADH:ubiquinone oxidoreductase (Na(+)-NQR) is a component of respiratory chain of various bacteria, and it generates a redox-driven transmembrane electrochemical Na(+) potential. Primary steps of the catalytic cycle of Na(+)-NQR from Vibrio harveyi were followed by the ultrafast freeze-quench approach in combination with conventional stopped-flow technique. The obtained sequence of events includes NADH binding ( approximately 1.5 x 10(7) m(-1) s(-1)), hydride ion transfer from NADH to FAD ( approximately 3.5 x 10(3) s(-1)), and partial electron separation and formation of equivalent fractions of reduced 2Fe-2S cluster and neutral semiquinone of FAD ( approximately 0.97 x 10(3) s(-1)). In the last step, a quasi-equilibrium is approached between the two states of FAD: two-electron reduced (50%) and one-electron reduced (the other 50%) species. The latter, neutral semiquinone of FAD, shares the second electron with the 2Fe-2S center. The transient midpoint redox potentials for the cofactors obtained during the fast kinetics measurements are very different from ones achieved during equilibrium redox titration and show that the functional states of the enzyme realized during its turning over cannot be modeled by the equilibrium approach.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , NAD/metabolismo , Quinona Redutases/química , Quinona Redutases/metabolismo , Sódio/metabolismo , Proteínas de Bactérias/genética , Catálise , Espectroscopia de Ressonância de Spin Eletrônica , Flavina-Adenina Dinucleotídeo/metabolismo , Congelamento , Ferro/metabolismo , Cinética , Mutagênese , Oxirredução , Quinona Redutases/genética , Enxofre/metabolismo , Vibrio/enzimologia , Vibrio/genética
7.
Biochemistry ; 46(45): 13141-8, 2007 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-17949011

RESUMO

Real-time measurements of the cytochrome c oxidase reaction with oxygen were performed by ATR-FTIR spectroscopy, using a mutant with a blocked D-pathway of proton transfer (D124N, Paracoccus denitrificans numbering). The complex spectrum of the ferryl-->oxidized transition together with other bands showed protonation of Glu 278 with a peak position at 1743 cm-1. Since our time resolution was not sufficient to follow the earlier reaction steps, the FTIR spectrum of the CO-inhibited fully reduced-->ferryl transition was obtained as a difference between the spectrum before the laser flash and the first spectrum after it. A trough at 1735 cm-1 due to deprotonation of Glu 278 was detected in this spectrum. These observations confirm the proposal [Smirnova I.A., et al. (1999) Biochemistry 38, 6826-6833] that the proton required for chemistry at the binuclear site is taken from Glu 278 in the perroxy-->ferryl step, and that the rate of the next step (ferryl-->oxidized) is limited by reprotonation of Glu 278 from the N-side of the membrane in the D124N mutant enzyme. The blockage of the D-pathway in this mutant for the first time allowed direct detection of deprotonation of Glu 278 and its reprotonation during oxidation of cytochrome oxidase by O2.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Oxigênio/metabolismo , Paracoccus denitrificans/enzimologia , Substituição de Aminoácidos , Complexo IV da Cadeia de Transporte de Elétrons/química , Cinética , Paracoccus denitrificans/genética , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Biochemistry ; 46(13): 4177-83, 2007 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-17341097

RESUMO

Reduction of cytochrome c oxidase is coupled to proton uptake, and the reduced-minus-oxidized FTIR spectrum should include signatures of protonation of protolytic centers. The major part of the spectrum shows only small differences between acidic and alkaline conditions, which is consistent with the rather weak pH dependence of the proton uptake stoichiometry. Here we aim at revealing redox state-dependent protonatable sites and present a comprehensive investigation over a wide pH range. The reduced-minus-oxidized transition of cytochrome c oxidase from Paracoccus denitrificans was studied by means of Fourier transform infrared spectroscopy in the pH range 5.2-9.5. Effects of pH were analyzed as the difference between reduced-minus-oxidized FTIR spectra at different pH values. Two pH-dependent processes with apparent pKa values of 6.6 and 8.4 and Hill coefficients 0.9 and 0.1, respectively, were found by this methodology. A sharp OH band appears in the IR "water region" on reduction of the enzyme, independent of pH in the range 6.5-9.0, and downshifted by approximately 940 cm-1 on changing the solvent to D2O and by 10 cm-1 on H216O/H218O isotope exchange. This feature of an asymmetric water molecule may belong to water that is produced in the binuclear center upon reduction or to a structured water molecule that loses a hydrogen bond.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Medição da Troca de Deutério , Eletroquímica/métodos , Concentração de Íons de Hidrogênio , Oxirredução , Oxigênio/química , Isótopos de Oxigênio , Paracoccus denitrificans/enzimologia , Prótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA