Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 54(24): 15789-15799, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33237731

RESUMO

A novel magnetic blade spray-tandem mass spectrometry (MBS-MS/MS) assay was developed and optimized, and its performance was characterized for the analysis of 204 pesticides from wastewater treatment facility (WWTF) process water. These results were compared and experimentally validated with an untargeted, high-resolution MS (HRMS) approach that employed liquid chromatography (LC)-amenable thin-film microextraction (TFME) devices to further elucidate the fate of pesticides through the WWTF process. As a result of our optimizations, we report an optimized workflow with an extraction time of 10 min, 150 µg of magnetic HLB particles, and 5 s of desorption. Excellent linearity was obtained for 168 of the 204 pesticides in deionized water, where 90% of the quantifiable pesticides had a determination coefficient (R2) of 0.99 across 3 orders of magnitude and 80% had limits of quantification below 0.5 ng/mL. We subsequently applied our optimized MBS-MS/MS method for the analysis of samples collected during the various stages of wastewater treatment from two WWTFs in Southern Ontario. This article presents a new streamlined methodology with a fast turnaround time for analyzing a large panel of pesticides, ultimately providing us the opportunity to evaluate the performance of two WWTFs for their efficacy in removing these toxic chemicals.


Assuntos
Praguicidas , Poluentes Químicos da Água , Purificação da Água , Limite de Detecção , Ontário , Praguicidas/análise , Espectrometria de Massas em Tandem , Águas Residuárias , Água , Poluentes Químicos da Água/análise
2.
Foods ; 10(11)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34829150

RESUMO

The Aspergillus niger exometabolome was recently investigated using advanced gas chromatography in tandem with multivariate analysis, which allowed a metabolite biomarker pattern to be proposed. Microbial metabolomics patterns have gained enormous relevance, mainly due to the amount of information made available, which may be useful in countless processes. One of the great challenges in microbial metabolomics is related to applications in more complex systems of metabolomics information obtained from studies carried out in culture media, as complications may occur due to the dynamic nature of biological systems. Thus, the main objective of this research was to evaluate the applicability of the A. niger metabololite biomarkers pattern for in situ and early evaluation of table grapes contamination, used as study model. A. niger is a ubiquitous fungus responsible for food contamination, being reported as one of the main agents of the black mold disease, a serious post-harvest pathology of table grapes. This work included analysis from 1 day of growth time of pure A. niger cultures, A. niger cultures obtained from previously contaminated grapes, and finally, an in situ solid-phase microextraction (SPME) approach directly on previously contaminated table grapes. Supervised multivariate analysis was performed which revealed that after 1 day of inoculation it was possible to detect A. niger biomarkers, which can be extremely useful in making this type of method possible for the rapid detection of food contamination. The results obtained confirm the potential applicability of the pattern of A. niger biomarkers for early detection of the fungi (after 1 day of contamination), and may be further explored for access food susceptibility to fungi contamination, based on direct analysis of the food item.

3.
Food Chem ; 340: 128127, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33032149

RESUMO

Pyrethroids insecticides may constitute a major hazard to honeybees, leading to colony collapse disorder. However, the determination of pyrethroids in honey has remained a challenging undertaking for analysts to date due to the high complexity of this matrix as well as the MRLs. This paper presents a fully automated method to overcome matrix influences using matrix-compatible overcoated SPME fiber for quantitative analysis of pyrethroids in diluted honey by GC-MS. The developed method was optimized using a multivariate approach providing LOQ values much lower than the stablished MRL (0.10-10 ng/g), while granting satisfactory linearity (R2 > 0.998) in a wide linear range of 0.1-2000 ng/g, repeatability with RSDs < 10%, reproducibility RSDs < 20%, and accuracy ranging from 75 to 118% and from 82 to 120 % for inter-day and intra-day assays, respectively by using five replicates. The method herein proposed overcomes challenges presented by complex matrices while minimizing sample handling and the overall complexity of the procedure.


Assuntos
Mel/análise , Piretrinas/análise , Microextração em Fase Sólida/métodos , Automação , Cromatografia Gasosa-Espectrometria de Massas , Limite de Detecção , Piretrinas/isolamento & purificação , Reprodutibilidade dos Testes
4.
J Agric Food Chem ; 69(26): 7257-7267, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34180225

RESUMO

Metabolomics is an omics technology that is extremely valuable to analyze all small-molecule metabolites in organisms. Recent advances in analytical instrumentation, such as mass spectrometry combined with data processing tools, chemometrics, and spectral data libraries, allow plant metabolomics studies to play a fundamental role in the agriculture field and food security. Few studies are found in the literature using the metabolomics approach in soybean plants on biotic stress. In this review, we provide a new perspective highlighting the potential of metabolomics-based mass spectrometry for soybean in response to biotic stress. Furthermore, we highlight the response and adaptation mechanisms of soybean on biotic stress about primary and secondary metabolism. Consequently, we provide subsidies for further studies of the resistance and improvement of the crop.


Assuntos
Glycine max , Metabolômica , Espectrometria de Massas , Glycine max/genética , Estresse Fisiológico
5.
Talanta ; 217: 121095, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32498882

RESUMO

Direct Analysis in Real Time (DART) has become a popular research area in food safety monitoring due to its unique characteristics that allow rapid and high-throughput screening of complex matrices with minimal sample preparation. The current research aimed to investigate the detection and quantitation capabilities of solid phase microextraction (SPME) and DART coupled to tandem mass spectrometry MS/MS for a large number of pharmaceutical drugs covering a wide range of physico-chemical properties (log P, -1.22-5.97) in complex animal-food matrices such as beef tissue. 53% of the 98 target analytes selected initially could be efficiently ionized by DART and quantified at or below the Canadian maximum residue limits (MRLs) and US regulatory tolerances in bovine muscle. Despite using only two internal standards for correction, promising results were obtained for these analytes, where 62% of the detected analytes achieved linear correlation coefficients >0.99 within the evaluated range of concentrations (0.25-3X, where X corresponds to the MRL for each target analyte). In addition, more than 92% of the detected analytes achieved average accuracies within the 70-120% range of their true concentrations and intraday repeatability RSDs ≤25% at the 0.5X, 1X, and 2X concentration levels. The fully automated sample preparation workflow allowed for total extraction and analysis times as short as 1 min time per sample. While DART has limited capabilities in terms of analyte coverage, this research highlights the potential usefulness of SPME-DART-MS/MS as a method for rapid analysis in food safety monitoring applications.


Assuntos
Resíduos de Drogas/análise , Ensaios de Triagem em Larga Escala , Músculos/química , Preparações Farmacêuticas/análise , Microextração em Fase Sólida , Animais , Bovinos , Espectrometria de Massas em Tandem , Fatores de Tempo
6.
J Chromatogr A ; 1632: 461541, 2020 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-33059176

RESUMO

This work presents the development and validation of novel thin film solid phase micro extraction (TF-SPME) based standard gas generating vials suitable for repeatable generation of gaseous standards for GC-MS analysis and quality control. The vials were developed using carbon mesh membranes loaded with pure polydimethylsiloxane (PDMS), divinylbenzene (DVB/PDMS), hydrophilic-lipophilic balance (HLB/PDMS), and carboxen (Car/PDMS) sorbents that were then spiked with modified McReynolds standards including benzene, 2-pentanone, 1-nitropropane, pyridine, 1-pentanol, octane, dodecane, and hexadecane. Sorbent strength was determined to follow the aforementioned order, with pure PDMS presenting the weakest sorption capabilities and Car/PDMS the strongest. While the weaker, pure PDMS based gas generating vials transferred an instrument-overloading amount of McReynolds probes to the 1.1 mm DVB/PDMS SPME arrows used for extraction, vials prepared using Car/PDMS TF-SPME as a sorbent failed to provide consistently detectable amounts of analytes less volatile than 1-nitropropane. The DVB/PDMS and HLB/PDMS based vials were found to maintain optimal sorption capabilities for the tested analytes, providing a sorption strength strong enough to not exhibit any depletion in 10 replicate runs, while still delivering a consistent amount of all the regular McReynolds components. Moreover, with intra-vial%RSDs of 5% or less for all analytes tested, these HLB and DVB vials were found to deliver very good repeatability. After purposely submitting vials to 200 accelerated depletion extractions (1.1 mm DVB/PDMS arrow at 55 °C for 3 min), vials prepared with DVB/PDMS were found to deplete by 33%, 38%, 34%, 33%, 40%, and 33% while vials prepared with HLB/PDMS were found to deplete by 21%, 16%, 12%, 31%, 16% and 0% for benzene, 2-pentanone, 1-nitropropane, pyridine, 1-pentanol, and octane, respectively. When user typical extractions conditions were used instead (50/30 µm DVB/Car/PDMS SPME fiber at 35 °C for 1 min), no depletion could be observed from the HLB/PDMS based vial while%RSDs ranged from 1.1-3.0% after the 300 extraction/desorption cycles. Finally, in efforts to demonstrate its real world applicability, the DVB/PDMS vial was used to evaluate the inter-fiber repeatability of commercial DVB/PDMS SPME arrows, with results demonstrating that arrows from a single package were statistically similar (ANOVA at 95% confidence).


Assuntos
Gases/análise , Microextração em Fase Sólida/métodos , Análise de Variância , Dimetilpolisiloxanos/química , Cromatografia Gasosa-Espectrometria de Massas , Membranas Artificiais , Controle de Qualidade , Padrões de Referência , Reprodutibilidade dos Testes , Compostos de Vinila/química
7.
Toxins (Basel) ; 11(8)2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31390769

RESUMO

Citrus are vulnerable to the postharvest decay caused by Penicillium digitatum, Penicillium italicum, and Geotrichum citri-aurantii, which are responsible for the green mold, blue mold, and sour rot post-harvest disease, respectively. The widespread economic losses in citriculture caused by these phytopathogens are minimized with the use of synthetic fungicides such as imazalil, thiabendazole, pyrimethanil, and fludioxonil, which are mainly employed as control agents and may have harmful effects on human health and environment. To date, numerous non-chemical postharvest treatments have been investigated for the control of these pathogens. Several studies demonstrated that biological control using microbial antagonists and natural products can be effective in controlling postharvest diseases in citrus, as well as the most used commercial fungicides. Therefore, microbial agents represent a considerably safer and low toxicity alternative to synthetic fungicides. In the present review, these biological control strategies as alternative to the chemical fungicides are summarized here and new challenges regarding the development of shelf-stable formulated biocontrol products are also discussed.


Assuntos
Citrus/microbiologia , Geotrichum/efeitos dos fármacos , Penicillium/efeitos dos fármacos , Controle Biológico de Vetores , Fungicidas Industriais/farmacologia , Geotrichum/isolamento & purificação , Penicillium/isolamento & purificação
8.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1110-1111: 9-14, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30776615

RESUMO

Studies of the microbiota of human skin have gained attention mainly because of its high complexity. Volatile metabolites that emerge from the microbiota play a significant role in fungus metabolism, acting on fungal development, defense, and protection against stress, communication, and pathogenicity. The present study evaluated volatile organic profiles, based on headspace-solid-phase microextraction-gas chromatography-mass spectrometry. We sought to define the optimal experimental conditions for such identification. Chromatograms from 15 fungi were evaluated and discriminated by principal component analysis. The volatile metabolite profiles that were putatively identified in the present study (e.g 2­isopropyl­5­methyl­cyclohex­3­en­1­one, 3/2­methyl­1­butanol, isopentyl ethanoate, phenyl ethanol) allowed the discrimination of different microorganisms from human skin. The present methodology may be a more rapid way of identifying microorganisms compared with conventional methods of microbiological identification.


Assuntos
Fungos/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Técnicas de Tipagem Micológica/métodos , Pele/microbiologia , Compostos Orgânicos Voláteis/análise , Fungos/classificação , Fungos/isolamento & purificação , Humanos , Análise de Componente Principal , Microextração em Fase Sólida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA