RESUMO
BACKGROUND: Chronic obstructive pulmonary disease (COPD) exhibits considerable progression heterogeneity. We hypothesized that elastic principal graph analysis (EPGA) would identify distinct clinical phenotypes and their longitudinal relationships. METHODS: Cross-sectional data from 8,972 tobacco-exposed COPDGene participants, with and without COPD, were used to train a model with EPGA, using thirty clinical, physiologic and CT features. Principal component analysis (PCA) was used to reduce data dimensionality to six principal components. An elastic principal tree was fitted to the reduced space. 4,585 participants from COPDGene Phase 2 were used to test longitudinal trajectories. 2,652 participants from SPIROMICS tested external reproducibility. RESULTS: Our analysis used cross-sectional data to create an elastic principal tree, where the concept of time is represented by distance on the tree. Six clinically distinct tree segments were identified that differed by lung function, symptoms, and CT features: 1) Subclinical (SC); 2) Parenchymal Abnormality (PA); 3) Chronic Bronchitis (CB); 4) Emphysema Male (EM); 5) Emphysema Female (EF); and 6) Severe Airways (SA) disease. Cross-sectional SPIROMICS data confirmed similar groupings. 5-year data from COPDGene mapped longitudinal changes onto the tree. 29% of patients changed segment during follow-up; longitudinal trajectories confirmed a net flow of patients along the tree, from SC towards Emphysema, although alternative trajectories were noted, through airway disease predominant phenotypes, CB and SA. CONCLUSION: This novel analytic methodology provides an approach to defining longitudinal phenotypic trajectories using cross sectional data. These insights are clinically relevant and could facilitate precision therapy and future trials to modify disease progression.
RESUMO
Tumor infiltration by T cells profoundly affects cancer progression and responses to immunotherapy. However, the tumor immunosuppressive microenvironment can impair the induction, trafficking, and local activity of antitumor T cells. Here, we investigated whether intratumoral injection of virus-derived peptide epitopes could activate preexisting antiviral T cell responses locally and promote antitumor responses or antigen spreading. We focused on a mouse model of cytomegalovirus (CMV), a highly prevalent human infection that induces vigorous and durable T cell responses. Mice persistently infected with murine CMV (MCMV) were challenged with lung (TC-1), colon (MC-38), or melanoma (B16-F10) tumor cells. Intratumoral injection of MCMV-derived T cell epitopes triggered in situ and systemic expansion of their cognate, MCMV-specific CD4+ or CD8+ T cells. The MCMV CD8+ T cell epitopes injected alone provoked arrest of tumor growth and some durable remissions. Intratumoral injection of MCMV CD4+ T cell epitopes with polyinosinic acid:polycytidylic acid (pI:C) preferentially elicited tumor antigen-specific CD8+ T cells, promoted tumor clearance, and conferred long-term protection against tumor rechallenge. Notably, secondary proliferation of MCMV-specific CD8+ T cells correlated with better tumor control. Importantly, intratumoral injection of MCMV-derived CD8+ T cell-peptide epitopes alone or CD4+ T cell-peptide epitopes with pI:C induced potent adaptive and innate immune activation of the tumor microenvironment. Thus, CMV-derived peptide epitopes, delivered intratumorally, act as cytotoxic and immunotherapeutic agents to promote immediate tumor control and long-term antitumor immunity that could be used as a stand-alone therapy. The tumor antigen-agnostic nature of this approach makes it applicable across a broad range of solid tumors regardless of their origin.
Assuntos
Linfócitos T CD8-Positivos , Infecções por Citomegalovirus , Citomegalovirus , Epitopos de Linfócito T , Neoplasias , Animais , Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Citomegalovirus/imunologia , Infecções por Citomegalovirus/imunologia , Epitopos de Linfócito T/administração & dosagem , Epitopos de Linfócito T/imunologia , Imunoterapia , Camundongos , Neoplasias/imunologia , Neoplasias/terapia , Poli I-C/administração & dosagem , Poli I-C/imunologia , Microambiente TumoralRESUMO
BACKGROUND: Small airways disease (SAD) is a major cause of airflow obstruction in COPD patients and has been identified as a precursor to emphysema. Although the amount of SAD in the lungs can be quantified using our Parametric Response Mapping (PRM) approach, the full breadth of this readout as a measure of emphysema and COPD progression has yet to be explored. We evaluated topological features of PRM-derived normal parenchyma and SAD as surrogates of emphysema and predictors of spirometric decline. METHODS: PRM metrics of normal lung (PRMNorm) and functional SAD (PRMfSAD) were generated from CT scans collected as part of the COPDGene study (n = 8956). Volume density (V) and Euler-Poincaré Characteristic (χ) image maps, measures of the extent and coalescence of pocket formations (i.e., topologies), respectively, were determined for both PRMNorm and PRMfSAD. Association with COPD severity, emphysema, and spirometric measures were assessed via multivariable regression models. Readouts were evaluated as inputs for predicting FEV1 decline using a machine learning model. RESULTS: Multivariable cross-sectional analysis of COPD subjects showed that V and χ measures for PRMfSAD and PRMNorm were independently associated with the amount of emphysema. Readouts χfSAD (ß of 0.106, p < 0.001) and VfSAD (ß of 0.065, p = 0.004) were also independently associated with FEV1% predicted. The machine learning model using PRM topologies as inputs predicted FEV1 decline over five years with an AUC of 0.69. CONCLUSIONS: We demonstrated that V and χ of fSAD and Norm have independent value when associated with lung function and emphysema. In addition, we demonstrated that these readouts are predictive of spirometric decline when used as inputs in a ML model. Our topological PRM approach using PRMfSAD and PRMNorm may show promise as an early indicator of emphysema onset and COPD progression.
Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Estudos Transversais , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Volume Expiratório Forçado/fisiologiaRESUMO
The neurovascular unit (NVU) within the brain is a multicellular unit that synergistically acts to maintain blood-brain barrier function and meet cerebral metabolic demand. Recent studies have indicated disruption to the NVU is associated with neuropathology in the perinatal brain. Infants with fetal growth restriction (FGR) are known to be at increased risk of neurodevelopmental conditions including motor, learning, and behavioural deficits. There are currently no neuroprotective treatments for these conditions. In this review, we analyse large animal studies examining the effects of FGR on the perinatal NVU. These studies show altered vascularity in the FGR brain as well as blood-brain barrier dysfunction due to underlying cellular changes, mediated by neuroinflammation. Neuroinflammation is a key mechanism associated with pathological effects in the FGR brain. Hence, targeting inflammation may be key to preserving the multicellular NVU and providing neuroprotection in FGR. A number of maternal and postnatal therapies with anti-inflammatory components have been investigated in FGR animal models examining targets for amelioration of NVU disruption. Each therapy showed promise by uniquely ameliorating the adverse effects of FGR on multiple aspects of the NVU. The successful implementation of a clinically viable neuroprotective treatment has the potential to improve outcomes for neonates affected by FGR. IMPACT: Disruption to the neurovascular unit is associated with neuropathology in fetal growth restriction. Inflammation is a key mechanism associated with neurovascular unit disruption in the growth-restricted brain. Anti-inflammatory treatments ameliorate adverse effects on the neurovascular unit and may provide neuroprotection.
Assuntos
Retardo do Crescimento Fetal , Doenças Neuroinflamatórias , Gravidez , Animais , Recém-Nascido , Lactente , Feminino , Humanos , Encéfalo/metabolismo , Barreira Hematoencefálica , Anti-Inflamatórios/uso terapêuticoRESUMO
INTRODUCTION: The University of California, San Francisco Cancer of the Prostate Risk Assessment (CAPRA) score is a validated tool using factors at diagnosis to predict prostate cancer outcomes after radical prostatectomy (RP). This study evaluates whether substitution of prostate-specific antigen (PSA) density for serum PSA improves predictive performance of the clinical CAPRA model. METHODS: Participants were diagnosed in 2000-2019 with stage T1/T2 cancer, underwent RP, with at least a 6-month follow-up. We computed standard CAPRA score using diagnostic age, Gleason grade, percent positive cores, clinical T stage, and serum PSA, and an alternate score using similar variables but substituting PSA density for PSA. We reported CAPRA categories as low (0-2), intermediate (3-5), and high (6-10) risk. Recurrence was defined as two consecutive PSA ≥ 0.2 ng/mL or receipt of salvage treatment. Life table and Kaplan-Meier analysis evaluated recurrence-free survival after prostatectomy. Cox proportional hazards regression models tested associations of standard or alternate CAPRA variables with recurrence risk. Additional models tested associations between standard or alternate CAPRA score with recurrence risk. Cox log-likelihood ratio test (-2 LOG L) assessed model accuracy. RESULTS: A total of 2880 patients had median age 62 years, GG1 30% and GG2 31%, median PSA 6.5, and median PSA density 0.19. Median postoperative follow-up was 45 months. Alternate CAPRA model was associated with shifts in risk scores, with 16% of patients increasing and 7% decreasing (p < 0.01). Recurrence-free survival after RP was 75% at 5 years and 62% at 10 years. Both CAPRA component models were associated with recurrence risk after RP on Cox regression. Covariate fit statistics showed better fit for standard CAPRA model versus alternate (p < 0.01). Standard (hazard ratio [HR]: 1.55; 95% confidence interval [CI]: 1.50-1.61) and alternate (HR: 1.50; 95% CI: 1.44-1.55) CAPRA scores were associated with recurrence risk, with better fit for standard model (p < 0.01). CONCLUSIONS: In a 2880 patient cohort followed for median 45 months after RP, alternate CAPRA model using PSA density was associated with higher biochemical recurrence (BCR) risk, but performed inferior to standard CAPRA at predicting BCR. While PSA density is an established prognostic variable in prediagnostic settings and sub-stratifying low-risk disease, it does not improve BCR model predictive accuracy when applied across a range of cancer risk.
Assuntos
Antígeno Prostático Específico , Neoplasias da Próstata , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/diagnóstico , Recidiva Local de Neoplasia/cirurgia , Prognóstico , Próstata , Prostatectomia , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/cirurgia , Medição de RiscoRESUMO
BACKGROUND: Female underrepresentation in oncology clinical trials can result in outcome disparities. We evaluated female participant representation in US oncology trials by intervention type, cancer site, and funding. MATERIALS AND METHODS: Data were extracted from the publicly available Aggregate Analysis of ClinicalTrials.gov database. Initially, 270,172 studies were identified. Following the exclusion of trials using Medical Subject Heading terms, manual review, those with incomplete status, non-US location, sex-specific organ cancers, or lacking participant sex data, 1650 trials consisting of 240,776 participants remained. The primary outcome was participation to prevalence ratio (PPR): percent females among trial participants divided by percent females in the disease population per US Surveillance, Epidemiology, and End Results Program data. PPRs of 0.8-1.2 reflect proportional female representation. RESULTS: Females represented 46.9% of participants (95% CI, 45.4-48.4); mean PPR for all trials was 0.912. Females were underrepresented in surgical (PPR 0.74) and other invasive (PPR 0.69) oncology trials. Among cancer sites, females were underrepresented in bladder (odds ratio [OR] 0.48, 95% CI 0.26-0.91, P = .02), head/neck (OR 0.44, 95% CI 0.29-0.68, P < .01), stomach (OR 0.40, 95% CI 0.23-0.70, P < .01), and esophageal (OR 0.40 95% CI 0.22-0.74, P < .01) trials. Hematologic (OR 1.78, 95% CI 1.09-1.82, P < .01) and pancreatic (OR 2.18, 95% CI 1.46-3.26, P < .01) trials had higher odds of proportional female representation. Industry-funded trials had greater odds of proportional female representation (OR 1.41, 95% CI 1.09-1.82, P = .01) than US government and academic-funded trials. CONCLUSIONS: Stakeholders should look to hematologic, pancreatic, and industry-funded cancer trials as exemplars of female participant representation and consider female representation when interpreting trial results.
Assuntos
Neoplasias , Masculino , Humanos , Feminino , Estados Unidos/epidemiologia , Neoplasias/epidemiologia , Neoplasias/terapia , Oncologia , Razão de Chances , Bases de Dados Factuais , PrevalênciaRESUMO
PURPOSE: For men with clinically localized prostate cancer outcomes of continuing active surveillance (AS) after biopsy progression are not well understood. We aim to determine the impact of continuing AS and delayed definitive treatment after biopsy progression on oncologic outcomes. MATERIALS AND METHODS: Participants in our prospective AS cohort (1990-2018) diagnosed with grade group (GG) 1, localized prostate cancer, with prostate specific antigen <20 who were subsequently upgraded to ≥GG2, and underwent further surveillance (biopsy/imaging/prostate specific antigen) were identified. Patients were stratified by post-progression followup into 3 groups: continue AS untreated, pursue early radical prostatectomy (RP) ≤6 months, or undergo late RP within 6 months to 5 years of progression. Patients receiving other treatments were excluded. We compared characteristics between groups and examined the associations of early vs late RP with risk of adverse pathology (AP) at RP and recurrence-free survival (RFS) after RP. RESULTS: Of 531 patients with biopsy progression and further surveillance 214 (40%) remained untreated, 192 (36%) pursued early RP and 125 (24%) underwent late RP. Among patients who underwent early vs late RP, there was no difference in GG (p=0.15) or AP (55% vs 53%, p=0.74) rate at RP, or 3-year RFS (80% vs 87%, log-rank p=0.64) after RP. In multivariable models, only Cancer of Prostate Risk Assessment post-surgical score was associated with risk of RFS (HR=1.42 per point, 95% CI 1.24-1.64). CONCLUSIONS: Among patients continuing AS after biopsy progression, 60% underwent surgery within 5 years. Delayed surgery after progression was not associated with higher risk of AP or RFS. This suggests select patients may be able to safely delay treatment after progression.
Assuntos
Antígeno Prostático Específico , Neoplasias da Próstata , Biópsia , Humanos , Masculino , Gradação de Tumores , Estudos Prospectivos , Prostatectomia , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/cirurgia , Conduta ExpectanteRESUMO
PURPOSE: Clinical trials require significant resources, but benefits are only realized after trial completion and dissemination of results. We comprehensively assessed early discontinuation, registry results reporting, and publication by trial sponsor and subspecialty in urology trials. MATERIALS AND METHODS: We assessed trial registrations from 2007 to 2019 on ClinicalTrials.gov and publication data from PubMed®/MEDLINE®. Associations between sponsor or subspecialty with early discontinuation were assessed using Cox proportional hazards and results reporting or publication with logistic regression at 3 years after completion. RESULTS: Of 8,636 trials 3,541 (41.0%) were completed and 999 (11.6%) were discontinued. Of completed trials 26.9% reported results and 21.6% were published. Sponsors included academic institutions (53.1%), industry (37.1%) and the U.S. government (9.8%). Academic-sponsored (adjusted HR 0.81, 95% CI 0.69-0.96, p=0.012) and government-sponsored trials (adjusted HR 0.62, 95% CI 0.49-0.78, p <0.001) were less likely than industry to discontinue early. Government-sponsored trials were more likely to report (adjusted OR 1.72, 95% CI 1.17-2.54, p=0.006) and publish (adjusted OR 1.89, 95% CI 1.23-2.89, p=0.004). Academic-sponsored trials were less likely to report (adjusted OR 0.65, CI:0.48-0.88, p=0.006) but more likely to publish (adjusted OR 1.72, 95% CI 1.25-2.37, p <0.001). These outcomes were similar across subspecialties. However, endourology was more likely to discontinue early (adjusted HR 2.00, 95% CI 1.53-2.95, p <0.001), general urology was more likely to report results (adjusted OR 1.54, 95% CI 1.13-2.11, p=0.006) and andrology was less likely to publish (adjusted OR 0.53, 95% CI 0.35-0.81, p=0.003). CONCLUSIONS: Sponsor type is significantly associated with trial completion and dissemination. Government-sponsored trials had the best performance, while industry and academic-sponsored trials lagged in completion and results reporting, respectively. Subspecialty played a lesser role. Lack of dissemination remains a problem for urology trials.
Assuntos
Ensaios Clínicos como Assunto , Urologia , Bases de Dados Factuais , Humanos , Disseminação de Informação , Publicações Periódicas como Assunto , Editoração , Sistema de Registros , Estados UnidosRESUMO
BACKGROUND: This study evaluates the role of social isolation on inflammation and cancer mortality among women. METHODS: Data were abstracted from the U.S. National Health and Nutrition Examination Survey from 1988 to 1994. The Social Network Index was used to assess participants' degree of social isolation. C-reactive protein and fibrinogen levels were included as markers of inflammation. We used the National Death Index to identify causes and dates of mortality. Chi-square and multivariable Cox regressions were employed for statistical analyses. RESULTS: Of 3360 women (median age: 54 years), the most isolated, very isolated, somewhat isolated, and not isolated comprised 14.5, 30.2, 37.1, and 18.2% of the sample, respectively. The most isolated participants were more likely to have low income (56.8% vs 12.2%, p < 0.001), have fewer years of education (40.8% vs 12.3%; p < 0.001), have low physical activity (27.3% vs 14.7%; p < 0.003), be obese (32.5% vs 24.4%; p = 0.02), and be current smokers (34.2% vs 10.3%; p < 0.001) compared to the not isolated ones. Mean fibrinogen levels increased with degree of social isolation (p = 0.003), but C-reactive protein showed no association (p = 0.52). Kaplan-Meier estimates indicated higher cancer mortality rates among participants with elevated fibrinogen levels, though not with statistical significance (p = 0.08). Furthermore, there was no association between social isolation and cancer mortality (p = 0.54). On multivariate analysis, obesity (HR = 1.56; 95% CI: 1.11-2.18), higher education (HR = 1.36; 95% CI: 1.01-1.83), and smoking (HR = 4.42, 95% CI: 2.84-6.88) were independent predictors for cancer mortality, while high physical activity predicted for lower mortality from cancer (HR = 0.67, 95% CI: 0.51-0.87). However, social isolation was not a predictor. CONCLUSION: Social isolation among women was associated with an increased level of fibrinogen, but not associated with cancer mortality. The relationship between inflammation and cancer mortality warrants further investigation.
Assuntos
Neoplasias , Isolamento Social , Proteína C-Reativa/análise , Feminino , Humanos , Inflamação/epidemiologia , Pessoa de Meia-Idade , Inquéritos NutricionaisRESUMO
Evidence shows that biomedical knowledge is more effectively taught within the medical curriculum by teaching in context, to facilitate learning transfer. The purpose of the present study was to evaluate the effect of combining high-technology simulation and physiology teaching on medical student learning and experience. First-year medical students received respiratory physiology teaching in the form of lectures, problem-based learning, and practical sessions. These students were then given the opportunity to apply their knowledge and problem solve using respiratory-related clinical case scenarios in simulated patients. Student understanding was assessed using a short quiz performed immediately before and after the session. Results revealed that the session significantly improved the mean score on tests (6.97 ± 0.29 vs. 8.22 ± 0.19, P < 0.001). Student evaluation was collected in focus groups, and recurring concepts were extracted from the data. Students reported that the sessions helped to bridge the gap between theory and practice, which aided their learning. In addition, this teaching methodology (simulation) was reportedly patient centered and added to the realism of the simulated scenario, with students stating that this teaching improved their confidence with managing real patients and clinical uncertainty. Simulation has been used extensively to teach clinical skills; however, research regarding its potential for teaching biomedical science within a clinical context is limited. Our study shows that combining high-technology simulation and physiology teaching contributed to an immediate improvement in medical student knowledge and enhanced their ability to make connections between theoretical knowledge and the world of practice.
Assuntos
Educação de Graduação em Medicina/métodos , Avaliação Educacional/métodos , Fisiologia/educação , Aprendizagem Baseada em Problemas/métodos , Mecânica Respiratória/fisiologia , Estudantes de Medicina , Feminino , Humanos , MasculinoRESUMO
Chylous pleural effusion (chylothorax) frequently accompanies lymphatic vessel malformations and other conditions with lymphatic defects. Although retrograde flow of chyle from the thoracic duct is considered a potential mechanism underlying chylothorax in patients and mouse models, the path chyle takes to reach the thoracic cavity is unclear. Herein, we use a novel transgenic mouse model, where doxycycline-induced overexpression of vascular endothelial growth factor (VEGF)-C was driven by the adipocyte-specific promoter adiponectin (ADN), to determine how chylothorax forms. Surprisingly, 100% of adult ADN-VEGF-C mice developed chylothorax within 7 days. Rapid, consistent appearance of chylothorax enabled us to examine the step-by-step development in otherwise normal adult mice. Dynamic imaging with a fluorescent tracer revealed that lymph in the thoracic duct of these mice could enter the thoracic cavity by retrograde flow into enlarged paravertebral lymphatics and subpleural lymphatic plexuses that had incompetent lymphatic valves. Pleural mesothelium overlying the lymphatic plexuses underwent exfoliation that increased during doxycycline exposure. Together, the findings indicate that chylothorax in ADN-VEGF-C mice results from retrograde flow of chyle from the thoracic duct into lymphatic tributaries with defective valves. Chyle extravasates from these plexuses and enters the thoracic cavity through exfoliated regions of the pleural mesothelium.
Assuntos
Quilotórax/genética , Sistema Linfático/anormalidades , Fator C de Crescimento do Endotélio Vascular/genética , Animais , Quilotórax/patologia , Vasos Linfáticos/anormalidades , Camundongos , Camundongos TransgênicosRESUMO
The elucidation of a complete, accurate, and permanent representation of the proteome of the mammalian cell may be achievable piecemeal by an organellar based approach. The small volume of organelles assures high protein concentrations. Providing isolated organelles are homogenous, this assures reliable protein characterization within the sensitivity and dynamic range limits of current mass spec based analysis. The stochastic aspect of peptide selection by tandem mass spectrometry for sequence determination by fragmentation is dealt with by multiple biological replicates as well as by prior protein separation on 1-D gels. Applications of this methodology to isolated synaptic vesicles, clathrin coated vesicles, endosomes, phagosomes, endoplasmic reticulum, and Golgi apparatus, as well as Golgi-derived COPI vesicles, have led to mechanistic insight into the identity and function of these organelles.
Assuntos
Células/química , Organelas , Proteômica , Vesículas Sinápticas/química , Animais , Endossomos/química , Endossomos/fisiologia , Células HeLa , Humanos , Modelos Biológicos , Organelas/fisiologia , Fagossomos/química , Fagossomos/fisiologia , Ratos , Vesículas Sinápticas/fisiologiaRESUMO
RATIONALE AND OBJECTIVES: Small airways disease (SAD) and emphysema are significant components of chronic obstructive pulmonary disease (COPD), a heterogenous disease where predicting progression is difficult. SAD, a principal cause of airflow obstruction in mild COPD, has been identified as a precursor to emphysema. Parametric Response Mapping (PRM) of chest computed tomography (CT) can help distinguish SAD from emphysema. Specifically, topologic PRM can define local patterns of both diseases to characterize how and in whom COPD progresses. We aimed to determine if distribution of CT-based PRM of functional SAD (fSAD) is associated with emphysema progression. MATERIALS AND METHODS: We analyzed paired inspiratory-expiratory chest CT scans at baseline and 5-year follow up in 1495 COPDGene subjects using topological analyses of PRM classifications. By spatially aligning temporal scans, we mapped local emphysema at year five to baseline lobar PRM-derived topological readouts. K-means clustering was applied to all observations. Subjects were subtyped based on predominant PRM cluster assignments and assessed using non-parametric statistical tests to determine differences in PRM values, pulmonary function metrics, and clinical measures. RESULTS: We identified distinct lobar imaging patterns and classified subjects into three radiologic subtypes: emphysema-dominant (ED), fSAD-dominant (FD), and fSAD-transition (FT: transition from healthy lung to fSAD). Relative to year five emphysema, FT showed rapid local emphysema progression (-57.5% ± 1.1) compared to FD (-49.9% ± 0.5) and ED (-33.1% ± 0.4). FT consisted primarily of at-risk subjects (roughly 60%) with normal spirometry. CONCLUSION: The FT subtype of COPD may allow earlier identification of individuals without spirometrically-defined COPD at-risk for developing emphysema.
Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Enfisema Pulmonar/diagnóstico por imagem , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodosRESUMO
BACKGROUND: Assessment and selection of donor lungs remain largely subjective and experience based. Criteria to accept or decline lungs are poorly standardized and are not compliant with the current donor pool. Using ex vivo computed tomography (CT) images, we investigated the use of a CT-based machine learning algorithm for screening donor lungs before transplantation. METHODS: Clinical measures and ex situ CT scans were collected from 100 cases as part of a prospective clinical trial. Following procurement, donor lungs were inflated, placed on ice according to routine clinical practice, and imaged using a clinical CT scanner before transplantation while stored in the icebox. We trained and tested a supervised machine learning method called dictionary learning, which uses CT scans and learns specific image patterns and features pertaining to each class for a classification task. The results were evaluated with donor and recipient clinical measures. RESULTS: Of the 100 lung pairs donated, 70 were considered acceptable for transplantation (based on standard clinical assessment) before CT screening and were consequently implanted. The remaining 30 pairs were screened but not transplanted. Our machine learning algorithm was able to detect pulmonary abnormalities on the CT scans. Among the patients who received donor lungs, our algorithm identified recipients who had extended stays in the intensive care unit and were at 19 times higher risk of developing chronic lung allograft dysfunction within 2 years posttransplant. CONCLUSIONS: We have created a strategy to ex vivo screen donor lungs using a CT-based machine learning algorithm. As the use of suboptimal donor lungs rises, it is important to have in place objective techniques that will assist physicians in accurately screening donor lungs to identify recipients most at risk of posttransplant complications.
Assuntos
Transplante de Pulmão , Doadores de Tecidos , Humanos , Pulmão/diagnóstico por imagem , Aprendizado de Máquina , Estudos Prospectivos , Tomografia Computadorizada por Raios X , Ensaios Clínicos como AssuntoRESUMO
This study introduces a new imaging, spatial transcriptomics (ST), and single-cell RNA-sequencing integration pipeline to characterize neoplastic cell state transitions during tumorigenesis. We applied a semi-supervised analysis pipeline to examine premalignant pancreatic intraepithelial neoplasias (PanINs) that can develop into pancreatic ductal adenocarcinoma (PDAC). Their strict diagnosis on formalin-fixed and paraffin-embedded (FFPE) samples limited the single-cell characterization of human PanINs within their microenvironment. We leverage whole transcriptome FFPE ST to enable the study of a rare cohort of matched low-grade (LG) and high-grade (HG) PanIN lesions to track progression and map cellular phenotypes relative to single-cell PDAC datasets. We demonstrate that cancer-associated fibroblasts (CAFs), including antigen-presenting CAFs, are located close to PanINs. We further observed a transition from CAF-related inflammatory signaling to cellular proliferation during PanIN progression. We validate these findings with single-cell high-dimensional imaging proteomics and transcriptomics technologies. Altogether, our semi-supervised learning framework for spatial multi-omics has broad applicability across cancer types to decipher the spatiotemporal dynamics of carcinogenesis.
Assuntos
Fibroblastos Associados a Câncer , Carcinogênese , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/genética , Carcinogênese/genética , Fibroblastos Associados a Câncer/metabolismo , Carcinoma Ductal Pancreático/genética , Microambiente Tumoral/genética , Análise de Célula Única/métodos , Transcriptoma/genética , Regulação Neoplásica da Expressão Gênica/genética , Carcinoma in Situ/genética , Carcinoma in Situ/patologiaRESUMO
Novel immunotherapy combination therapies have improved outcomes for patients with hepatocellular carcinoma (HCC), but responses are limited to a subset of patients and recurrence can also occur. Little is known about the inter- and intra-tumor heterogeneity in cellular signaling networks within the HCC tumor microenvironment (TME) that underlie responses to modern systemic therapy. We applied spatial transcriptomics (ST) profiling to characterize the tumor microenvironment in HCC resection specimens from a clinical trial of neoadjuvant cabozantinib, a multi-tyrosine kinase inhibitor that primarily blocks VEGF, and nivolumab, a PD-1 inhibitor in which 5 out of 15 patients were found to have a pathologic response. ST profiling demonstrated that the TME of responding tumors was enriched for immune cells and cancer associated fibroblasts (CAF) with pro-inflammatory signaling relative to the non-responders. The enriched cancer-immune interactions in responding tumors are characterized by activation of the PAX5 module, a known regulator of B cell maturation, which colocalized with spots with increased B cell markers expression suggesting strong activity of these cells. Cancer-CAF interactions were also enriched in the responding tumors and were associated with extracellular matrix (ECM) remodeling as there was high activation of FOS and JUN in CAFs adjacent to tumor. The ECM remodeling is consistent with proliferative fibrosis in association with immune-mediated tumor regression. Among the patients with major pathologic response, a single patient experienced early HCC recurrence. ST analysis of this clinical outlier demonstrated marked tumor heterogeneity, with a distinctive immune-poor tumor region that resembles the non-responding TME across patients and was characterized by cancer-CAF interactions and expression of cancer stem cell markers, potentially mediating early tumor immune escape and recurrence in this patient. These data show that responses to modern systemic therapy in HCC are associated with distinctive molecular and cellular landscapes and provide new targets to enhance and prolong responses to systemic therapy in HCC.
RESUMO
BACKGROUND: Fetal growth restriction (FGR) is associated with deficits in the developing brain, including neurovascular unit (NVU) dysfunction. Endothelial colony forming cells (ECFC) can mediate improved vascular stability, and have demonstrated potential to enhance vascular development and protection. This investigation examined whether ECFCs from human umbilical cord blood (UCB) enhanced NVU development in FGR and appropriate for gestational age (AGA) fetal sheep. METHODS: Twin-bearing ewes had surgery performed at 88-90 days' gestation, inducing FGR in one fetus. At 113 days, ECFCs (1 × 107 cells) cultured from human UCB were administered intravenously to fetal sheep in utero. At 127 days, ewes and their fetuses were euthanised, fetal brains collected, and NVU components analysed by immunohistochemistry. RESULTS: Twenty-four fetal lambs, arranged in four groups: AGA (n = 7), FGR (n = 5), AGA + ECFC (n = 6), and FGR + ECFC (n = 6), were included in analyses. FGR resulted in lower body weight than AGA (P = 0.002) with higher brain/body weight ratio (P = 0.003). ECFC treatment was associated with increased vascular density throughout the brain in both AGA + ECFC and FGR + ECFC groups, as well as increased vascular-astrocyte coverage and VEGF expression in the cortex (P = 0.003, P = 0.0006, respectively) and in the subcortical white matter (P = 0.01, P = 0.0002, respectively) when compared with the untreated groups. CONCLUSIONS: ECFC administration enhanced development of NVU components in both the AGA and FGR fetal brain. Further investigation is required to assess how to optimise the enhanced angiogenic capabilities of ECFCs to provide a therapeutic strategy to protect the developing NVU against vulnerabilities associated with FGR.