Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(39): 21419-21431, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37747924

RESUMO

Combining multiple species working in tandem for different hydrogen evolution reaction (HER) steps is an effective strategy to design HER electrocatalysts. Here, we engineered a hierarchical electrode for the HER composed of amorphous-TiO2/Cu nanorods (NRs) decorated with cost-effective Ru-Cu nanoheterostructures (Ru mass loading = 52 µg/cm2). Such an electrode exhibits a stable, over 250 h, low overpotential of 74 mV at -200 mA/cm2 for the HER in 1 M NaOH. The high activity of the electrode is attributed, by structural analysis, operando X-ray absorption spectroscopy, and first-principles simulations, to synergistic functionalities: (1) mechanically robust, vertically aligned Cu NRs with high electrical conductivity and porosity provide fast charge and gas transfer channels; (2) the Ru electronic structure, regulated by the size of Cu clusters at the surface, facilitates the water dissociation (Volmer step); (3) the Cu clusters grown atop Ru exhibit a close-to-zero Gibbs free energy of the hydrogen adsorption, promoting fast Heyrovsky/Tafel steps. An alkaline electrolyzer (AEL) coupling the proposed cathode and a stainless-steel anode can stably operate in both continuous (1 A/cm2 for over 200 h) and intermittent modes (accelerated stress tests). A techno-economic analysis predicts the minimal overall hydrogen production cost of US$2.12/kg in a 1 MW AEL plant of 30 year lifetime based on our AEL single cell, hitting the worldwide targets (US$2-2.5/kgH2).

2.
Inorg Chem ; 61(11): 4598-4608, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35254806

RESUMO

This work reports a method to obtain stable dispersions of nickel-iron layered double hydroxide (NiFe-LDH) nanosheets in ethanol by exposing the as-synthetized bulk NiFe-LDH to a sodium acetate solution or by adding acetate and citrate anions inside the reaction mixture. In the case of citrate-containing NiFe-LDH, the formation of single-layer nanosheets is confirmed by X-ray diffraction and atomic force microscopy measurements. Lastly, the effect of acetate ions on the electrocatalytic activity of NiFe-LDH is discussed for the oxygen evolution reaction. Our results provide useful information to improve the existing LDH exfoliation routes based on the use of green solvent alternatives to the mostly used formamide.

3.
Chem Soc Rev ; 50(21): 11870-11965, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34494631

RESUMO

In the ever-increasing energy demand scenario, the development of novel photovoltaic (PV) technologies is considered to be one of the key solutions to fulfil the energy request. In this context, graphene and related two-dimensional (2D) materials (GRMs), including nonlayered 2D materials and 2D perovskites, as well as their hybrid systems, are emerging as promising candidates to drive innovation in PV technologies. The mechanical, thermal, and optoelectronic properties of GRMs can be exploited in different active components of solar cells to design next-generation devices. These components include front (transparent) and back conductive electrodes, charge transporting layers, and interconnecting/recombination layers, as well as photoactive layers. The production and processing of GRMs in the liquid phase, coupled with the ability to "on-demand" tune their optoelectronic properties exploiting wet-chemical functionalization, enable their effective integration in advanced PV devices through scalable, reliable, and inexpensive printing/coating processes. Herein, we review the progresses in the use of solution-processed 2D materials in organic solar cells, dye-sensitized solar cells, perovskite solar cells, quantum dot solar cells, and organic-inorganic hybrid solar cells, as well as in tandem systems. We first provide a brief introduction on the properties of 2D materials and their production methods by solution-processing routes. Then, we discuss the functionality of 2D materials for electrodes, photoactive layer components/additives, charge transporting layers, and interconnecting layers through figures of merit, which allow the performance of solar cells to be determined and compared with the state-of-the-art values. We finally outline the roadmap for the further exploitation of solution-processed 2D materials to boost the performance of PV devices.

4.
Small ; 16(50): e2003372, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33225597

RESUMO

The nanoengineering of the structure of transition metal dichalcogenides (TMDs) is widely pursued to develop viable catalysts for the hydrogen evolution reaction (HER) alternative to the precious metallic ones. Metallic group-5 TMDs have been demonstrated to be effective catalysts for the HER in acidic media, making affordable real proton exchange membrane water electrolysers. Their key-plus relies on the fact that both their basal planes and edges are catalytically active for the HER. In this work, the 6R phase of TaS2 is "rediscovered" and engineered. A liquid-phase microwave treatment is used to modify the structural properties of the 6R-TaS2 nanoflakes produced by liquid-phase exfoliation. The fragmentation of the nanoflakes and their evolution from monocrystalline to partly polycrystalline structures improve the HER-activity, lowering the overpotential at cathodic current of 10 mA cm-2 from 0.377 to 0.119 V. Furthermore, 6R-TaS2 nanoflakes act as ideal support to firmly trap Pt species, which achieve a mass activity (MA) up 10 000 A gPt -1 at overpotential of 50 mV (20 000 A gPt -1 at overpotentials of 72 mV), representing a 20-fold increase of the MA of Pt measured for the Pt/C reference, and approaching the state-of-the-art of the Pt mass activity.

5.
Small ; 15(52): e1904670, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31788951

RESUMO

Among the large family of transition metal dichalcogenides, recently ReS2 has stood out due to its nearly layer-independent optoelectronic and physicochemical properties related to its 1T distorted octahedral structure. This structure leads to strong in-plane anisotropy, and the presence of active sites at its surface makes ReS2 interesting for gas sensing and catalysts applications. However, current fabrication methods use chemical or physical vapor deposition (CVD or PVD) processes that are costly, time-consuming and complex, therefore limiting its large-scale production and exploitation. To address this issue, a colloidal synthesis approach is developed, which allows the production of ReS2 at temperatures below 360 °C and with reaction times shorter than 2h. By combining the solution-based synthesis with surface functionalization strategies, the feasibility of colloidal ReS2 nanosheet films for sensing different gases is demonstrated with highly competitive performance in comparison with devices built with CVD-grown ReS2 and MoS2 . In addition, the integration of the ReS2 nanosheet films in assemblies together with carbon nanotubes allows to fabricate electrodes for electrocatalysis for H2 production in both acid and alkaline conditions. Results from proof-of-principle devices show an electrocatalytic overpotential competitive with devices based on ReS2 produced by CVD, and even with MoS2 , WS2 , and MoSe2 electrocatalysts.

6.
Nano Lett ; 18(11): 7155-7164, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30285447

RESUMO

A novel WS2-graphite dual-ion battery (DIB) is developed by combining a conventional graphite cathode and a high-capacity few-layer WS2-flake anode. The WS2 flakes are produced by exploiting wet-jet milling (WJM) exfoliation, which allows large-scale and free-material loss production (i.e., volume up to 8 L h-1 at concentration of 10 g L-1 and exfoliation yield of 100%) of few-layer WS2 flakes in dispersion. The WS2 anodes enable DIBs, based on hexafluorophosphate (PF6-) and lithium (Li+) ions, to achieve charge-specific capacities of 457, 438, 421, 403, 295, and 169 mAh g-1 at current rates of 0.1, 0.2, 0.3, 0.4, 0.8, and 1.0 A g-1, respectively, outperforming conventional DIBs. The WS2-based DIBs operate in the 0 to 4 V cell voltage range, thus extending the operating voltage window of conventional WS2-based Li-ion batteries (LIBs). These results demonstrate a new route toward the exploitation of WS2, and possibly other transition-metal dichalcogenides, for the development of next-generation energy-storage devices.

7.
Small ; 14(26): e1800749, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29845748

RESUMO

Single- and few-layered InSe flakes are produced by the liquid-phase exfoliation of ß-InSe single crystals in 2-propanol, obtaining stable dispersions with a concentration as high as 0.11 g L-1 . Ultracentrifugation is used to tune the morphology, i.e., the lateral size and thickness of the as-produced InSe flakes. It is demonstrated that the obtained InSe flakes have maximum lateral sizes ranging from 30 nm to a few micrometers, and thicknesses ranging from 1 to 20 nm, with a maximum population centered at ≈5 nm, corresponding to 4 Se-In-In-Se quaternary layers. It is also shown that no formation of further InSe-based compounds (such as In2 Se3 ) or oxides occurs during the exfoliation process. The potential of these exfoliated-InSe few-layer flakes as a catalyst for the hydrogen evolution reaction (HER) is tested in hybrid single-walled carbon nanotubes/InSe heterostructures. The dependence of the InSe flakes' morphologies, i.e., surface area and thickness, on the HER performances is highlighted, achieving the best efficiencies with small flakes offering predominant edge effects. The theoretical model unveils the origin of the catalytic efficiency of InSe flakes, and correlates the catalytic activity to the Se vacancies at the edge of the flakes.

8.
Nanotechnology ; 29(33): 335404, 2018 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-29808827

RESUMO

Quasi-1D-hyperbranched TiO2 nanostructures are grown via pulsed laser deposition and sensitized with thin layers of CdS to act as a highly efficient photoelectrochemical photoanode. The device properties are systematically investigated by optimizing the height of TiO2 scaffold structure and thickness of the CdS sensitizing layer, achieving photocurrent values up to 6.6 mA cm-2 and reaching saturation with applied biases as low as 0.35 VRHE. The high internal conversion efficiency of these devices is to be found in the efficient charge generation and injection of the thin CdS photoactive film and in the enhanced charge transport properties of the hyperbranched TiO2 scaffold. Hence, the proposed device represents a promising architecture for heterostructures capable of achieving high solar-to-hydrogen efficiency.

9.
Nanotechnology ; 28(24): 245603, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28440788

RESUMO

Monolithic dye-sensitized solar cell (DSC) architectures hold great potential for building-integrated photovoltaics applications. They indeed benefit from lower weight and manufacturing costs as they avoid the use of a transparent conductive oxide (TCO)-coated glass counter electrode. In this work, a transparent monolithic DSC comprising a hierarchical 1D nanostructure stack is fabricated by physical vapor deposition techniques. The proof of concept device comprises hyperbranched TiO2 nanostructures, sensitized by the prototypical N719, as photoanode, a hierarchical nanoporous Al2O3 spacer, and a microporous indium tin oxide (ITO) top electrode. An overall 3.12% power conversion efficiency with 60% transmittance outside the dye absorption spectral window is demonstrated. The introduction of a porous TCO layer allows an efficient trade-off between transparency and power conversion. The porous ITO exhibits submicrometer voids and supports annealing temperatures above 400 °C without compromising its optoelectronical properties. After thermal annealing at 500 °C, the resistivity, mobility, and carrier concentration of the 800 nm-thick porous ITO layer are found to be respectively 2.3 × 10-3 Ω cm-1, 11 cm2 V-1 s-1, and 1.62 × 1020 cm-3, resulting in a series resistance in the complete device architecture of 45 Ω. Electrochemical impedance and intensity-modulated photocurrent/photovoltage spectroscopy give insight into the electronic charge dynamic within the hierarchical monolithic DSCs, paving the way for potential device architecture improvements.

10.
Adv Mater ; 36(21): e2312071, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38377368

RESUMO

Designing robust and cost-effective electrocatalysts for efficient alkaline oxygen evolution reaction (OER) is of great significance in the field of water electrolysis. In this study, an electrochemical strategy to activate stainless steel (SS) electrodes for efficient OER is introduced. By cycling the SS electrode within a potential window that encompasses the Fe(II)↔Fe(III) process, its OER activity can be enhanced to a great extent compared to using a potential window that excludes this redox reaction, decreasing the overpotential at current density of 100 mA cm-2 by 40 mV. Electrochemical characterization, Inductively Coupled Plasma - Optical Emission Spectroscopy, and operando Raman measurements demonstrate that the Fe leaching at the SS surface can be accelerated through a Fe → γ-Fe2O3 → Fe3O4 or FeO → Fe2+ (aq.) conversion process, leading to the sustained exposure of Cr and Ni species. While Cr leaching occurs during its oxidation process, Ni species display higher resistance to leaching and gradually accumulate on the SS surface in the form of OER-active Fe-incorporated NiOOH species. Furthermore, a potential-pulse strategy is also introduced to regenerate the OER-activity of 316-type SS for stable OER, both in the three-electrode configuration (without performance decay after 300 h at 350 mA cm-2) and in an alkaline water electrolyzer (≈30 mV cell voltage increase after accelerated stress test-AST). The AST-stabilized cell can still reach 1000 and 4000 mA cm-2 at cell voltages of 1.69 and 2.1 V, which makes it competitive with state-of-the-art electrolyzers based on ion-exchange membrane using Ir-based anodes.

11.
ACS Appl Mater Interfaces ; 16(11): 13706-13718, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38458613

RESUMO

The capacitance of electrode materials used in electrochemical double-layer capacitors (EDLCs) is currently limited by several factors, including inaccessible isolated micropores in high-surface area carbons, the finite density of states resulting in a quantum capacitance in series to Helmholtz double-layer capacitance, and the presence of surface impurities, such as functional groups and adsorbed species. To unlock the full potential of EDLC active materials and corresponding electrodes, several post-production treatments are commonly proposed to improve their capacitance and, thus, the energy density of the corresponding devices. In this work, we report a systematic study of the effect of a prototypical treatment, namely H2-assisted thermal treatment, on the chemical, structural, and thermal properties of activated carbon and corresponding electrodes. By combining multiple characterization techniques, we clarify the actual origins of the improvement of the performance (e.g., > +35% energy density for the investigated power densities in the 0.5-45 kW kg-1 range) of the EDLCs based on treated electrodes compared to the case based on the pristine electrodes. Contrary to previous works supporting a questionable graphitization of the activated carbon at temperatures <1000 °C, we found that a "surface graphitization" of the activated carbon, detected by spectroscopic analysis, is mainly associated with the desorption of surface contaminants. The elimination of surface impurities, including adsorbed species, improves the surface capacitance of the activated carbon (CsurfAC) by +37.1 and +36.3% at specific currents of 1 and 10 A g-1, respectively. Despite the presence of slight densification of the activated carbon upon the thermal treatment, the latter still improves the cell gravimetric capacitance normalized on the mass of the activated carbon only (CgAC), e.g., + 28% at 1 A g-1. Besides, our holistic approach identifies the change in the active material and binder contents as a concomitant cause of the increase of cell gravimetric capacitance (Cg), accounting for the mass of all of the electrode materials measured for treated electrodes compared to pristine ones. Overall, this study provides new insights into the relationship between the modifications of the electrode materials induced by H2-assisted thermal treatments and the performance of the resulting EDLCs.

12.
Nat Commun ; 15(1): 4552, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811579

RESUMO

Perovskite solar cells promise to be part of the future portfolio of photovoltaic technologies, but their instability is slow down their commercialization. Major stability assessments have been recently achieved but reliable accelerated ageing tests on beyond small-area cells are still poor. Here, we report an industrial encapsulation process based on the lamination of highly viscoelastic semi-solid/highly viscous liquid adhesive atop the perovskite solar cells and modules. Our encapsulant reduces the thermomechanical stresses at the encapsulant/rear electrode interface. The addition of thermally conductive two-dimensional hexagonal boron nitride into the polymeric matrix improves the barrier and thermal management properties of the encapsulant. Without any edge sealant, encapsulated devices withstood multifaceted accelerated ageing tests, retaining >80% of their initial efficiency. Our encapsulation is applicable to the most established cell configurations (direct/inverted, mesoscopic/planar), even with temperature-sensitive materials, and extended to semi-transparent cells for building-integrated photovoltaics and Internet of Things systems.

13.
ACS Appl Mater Interfaces ; 15(33): 39218-39233, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37552158

RESUMO

Lithium-oxygen (Li-O2) batteries are nowadays among the most appealing next-generation energy storage systems in view of a high theoretical capacity and the use of transition-metal-free cathodes. Nevertheless, the practical application of these batteries is still hindered by limited understanding of the relationships between cell components and performances. In this work, we investigate a Li-O2 battery by originally screening different gas diffusion layers (GDLs) characterized by low specific surface area (<40 m2 g-1) with relatively large pores (absence of micropores), graphitic character, and the presence of a fraction of the hydrophobic PTFE polymer on their surface (<20 wt %). The electrochemical characterization of Li-O2 cells using bare GDLs as the support indicates that the oxygen reduction reaction (ORR) occurs at potentials below 2.8 V vs Li+/Li, while the oxygen evolution reaction (OER) takes place at potentials higher than 3.6 V vs Li+/Li. Furthermore, the relatively high impedance of the Li-O2 cells at the pristine state remarkably decreases upon electrochemical activation achieved by voltammetry. The Li-O2 cells deliver high reversible capacities, ranging from ∼6 to ∼8 mA h cm-2 (referred to the geometric area of the GDLs). The Li-O2 battery performances are rationalized by the investigation of a practical Li+ diffusion coefficient (D) within the cell configuration adopted herein. The study reveals that D is higher during ORR than during OER, with values depending on the characteristics of the GDL and on the cell state of charge. Overall, D values range from ∼10-10 to ∼10-8 cm2 s-1 during the ORR and ∼10-17 to ∼10-11 cm2 s-1 during the OER. The most performing GDL is used as the support for the deposition of a substrate formed by few-layer graphene and multiwalled carbon nanotubes to improve the reaction in a Li-O2 cell operating with a maximum specific capacity of 1250 mA h g-1 (1 mA h cm-2) at a current density of 0.33 mA cm-2. XPS on the electrode tested in our Li-O2 cell setup suggests the formation of a stable solid electrolyte interphase at the surface which extends the cycle life.

14.
Nat Commun ; 14(1): 4680, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542064

RESUMO

Alkaline electrolyzers generally produce hydrogen at current densities below 0.5 A/cm2. Here, we design a cost-effective and robust cathode, consisting of electrodeposited Ru nanoparticles (mass loading ~ 53 µg/cm2) on vertically oriented Cu nanoplatelet arrays grown on metallic meshes. Such cathode is coupled with an anode based on stacked stainless steel meshes, which outperform NiFe hydroxide catalysts. Our electrolyzers exhibit current densities as high as 1 A/cm2 at 1.69 V and 3.6 A/cm2 at 2 V, reaching the performances of proton-exchange membrane electrolyzers. Also, our electrolyzers stably operate in continuous (1 A/cm2 for over 300 h) and intermittent modes. A total production cost of US$2.09/kgH2 is foreseen for a 1 MW plant (30-year lifetime) based on the proposed electrode technology, meeting the worldwide targets (US$2-2.5/kgH2). Hence, the use of a small amount of Ru in cathodes (~0.04 gRu per kW) is a promising strategy to solve the dichotomy between the capital and operational expenditures of conventional alkaline electrolyzers for high-throughput operation, while facing the scarcity issues of Pt-group metals.

15.
J Mater Chem A Mater ; 11(24): 12866-12875, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37346737

RESUMO

Improving the perovskite/electron-transporting layer (ETL) interface is a crucial task to boost the performance of perovskite solar cells (PSCs). This is utterly fundamental in an inverted (p-i-n) configuration using fullerene-based ETLs. Here, we propose a scalable strategy to improve fullerene-based ETLs by incorporating high-quality few-layer graphene flakes (GFs), industrially produced through wet-jet milling exfoliation of graphite, into phenyl-C61-butyric acid methyl ester (PCBM). Our new composite ETL (GF:PCBM) can be processed into an ultrathin (∼10 nm), pinhole-free film atop the perovskite. We find that the presence of GFs in the PCBM matrix reduces defect-mediated recombination, while creating preferential paths for the extraction of electrons towards the current collector. The use of our GF-based composite ETL resulted in a significant enhancement in the open circuit voltage and fill factor of triple cation-based inverted PSCs, boosting the power conversion efficiency from ∼19% up to 20.8% upon the incorporation of GFs into the ETL.

16.
Front Chem ; 10: 1045212, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36385988

RESUMO

We report high-current density operating alkaline (water) electrolyzers (AELs) based on platinum on Vulcan (Pt/C) cathodes and stainless-steel anodes. By optimizing the binder (Nafion ionomer) and Pt mass loading (mPt) content in the catalysts coating at the cathode side, the AEL can operate at the following (current density, voltage, energy efficiency -based on the hydrogen higher heating value-) conditions (1.0 A cm-2, 1.68 V, 87.8%) (2.0 A cm-2, 1.85 V, 79.9%) (7.0 A cm-2, 2.38 V, 62.3%). The optimal amount of binder content (25 wt%) also ensures stable AEL performances, as proved through dedicated intermittent (ON-OFF) accelerated stress tests and continuous operation at 1 A cm-2, for which a nearly zero average voltage increase rate was measured over 335 h. The designed AELs can therefore reach proton-exchange membrane electrolyzer-like performance, without relying on the use of scarce anode catalysts, namely, iridium. Contrary to common opinions, our preliminary techno-economic analysis shows that the Pt/C cathode-enabled high-current density operation of single cell AELs can also reduce substantially the impact of capital expenditures (CAPEX) on the overall cost of the green hydrogen, leading CAPEX to operating expenses (OPEX) cost ratio <10% for single cell current densities ≥0.8 A cm-2. Thus, we estimate a hydrogen production cost as low as $2.06 kgH2 -1 for a 30 years-lifetime 1 MW-scale AEL plant using Pt/C cathodes with mPt of 150 µg cm-2 and operating at single cell current densities of 0.6-0.8 A cm-2. Thus, Pt/C cathodes enable the realization of AELs that can efficiently operate at high current densities, leading to low OPEX while even benefiting the CAPEX due to their superior plant compactness compared to traditional AELs.

17.
ACS Appl Energy Mater ; 5(2): 1378-1384, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35252771

RESUMO

Perovskite solar cells have reached certified power conversion efficiency over 25%, enabling the realization of efficient large-area modules and even solar farms. It is therefore essential to deal with technical aspects, including the reverse-bias operation and hot-spot effects, which are crucial for the practical implementation of any photovoltaic technology. Here, we analyze the reverse bias (from 2.5 to 30 V) and temperature behavior of mesoscopic cells through infrared thermal imaging coupled with current density measurements. We show that the occurrence of local heating (hot-spots) and arc faults, caused by local shunts, must be considered during cell and module designing.

18.
ACS Appl Mater Interfaces ; 14(30): 34963-34974, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35876692

RESUMO

Bismuth telluride halides (BiTeX) are Rashba-type crystals with several potential applications ranging from spintronics and nonlinear optics to energy. Their layered structures and low cleavage energies allow their production in a two-dimensional form, opening the path to miniaturized device concepts. The possibility to exfoliate bulk BiTeX crystals in the liquid represents a useful tool to formulate a large variety of functional inks for large-scale and cost-effective device manufacturing. Nevertheless, the exfoliation of BiTeI by means of mechanical and electrochemical exfoliation proved to be challenging. In this work, we report the first ultrasonication-assisted liquid-phase exfoliation (LPE) of BiTeI crystals. By screening solvents with different surface tension and Hildebrandt parameters, we maximize the exfoliation efficiency by minimizing the Gibbs free energy of the mixture solvent/BiTeI crystal. The most effective solvents for the BiTeI exfoliation have a surface tension close to 28 mN m-1 and a Hildebrandt parameter between 19 and 25 MPa0.5. The morphological, structural, and chemical properties of the LPE-produced single-/few-layer BiTeI flakes (average thickness of ∼3 nm) are evaluated through microscopic and optical characterizations, confirming their crystallinity. Second-harmonic generation measurements confirm the non-centrosymmetric structure of both bulk and exfoliated materials, revealing a large nonlinear optical response of BiTeI flakes due to the presence of strong quantum confinement effects and the absence of typical phase-matching requirements encountered in bulk nonlinear crystals. We estimated a second-order nonlinearity at 0.8 eV of |χ(2)| ∼ 1 nm V-1, which is 10 times larger than in bulk BiTeI crystals and is of the same order of magnitude as in other semiconducting monolayers (e.g., MoS2).

19.
Nanoscale ; 14(16): 6152-6161, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35389414

RESUMO

In this work, novel proton-exchange membranes (PEMs) based on sulfonated poly(ether ether ketone) (SPEEK) and two-dimensional (2D) sulfonated niobium disulphide (S-NbS2) nanoflakes are synthesized by a solution-casting method and used in vanadium redox flow batteries (VRFBs). The NbS2 nanoflakes are produced by liquid-phase exfoliation of their bulk counterpart and chemically functionalized with terminal sulfonate groups to improve dimensional and chemical stabilities, proton conductivity (σ) and fuel barrier properties of the as-produced membranes. The addition of S-NbS2 nanoflakes to SPEEK decreases the vanadium ion permeability from 5.42 × 10-7 to 2.34 × 10-7 cm2 min-1. Meanwhile, it increases the membrane σ and selectivity up to 94.35 mS cm-2 and 40.32 × 104 S min cm-3, respectively. The cell assembled with the optimized membrane incorporating 2.5 wt% of S-NbS2 nanoflakes (SPEEK:2.5% S-NbS2) exhibits high efficiency metrics, i.e., coulombic efficiency between 98.7 and 99.0%, voltage efficiency between 90.2 and 73.2% and energy efficiency between 89.3 and 72.8% within the current density range of 100-300 mA cm-2, delivering a maximum power density of 0.83 W cm-2 at a current density of 870 mA cm-2. The SPEEK:2.5% S-NbS2 membrane-based VRFBs show a stable behavior over 200 cycles at 200 mA cm-2. This study opens up an effective avenue for the production of advanced SPEEK-based membranes for VRFBs.

20.
ACS Nano ; 16(10): 16426-16442, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36194759

RESUMO

Highly efficient and durable flexible solid-state supercapacitors (FSSSCs) are emerging as low-cost devices for portable and wearable electronics due to the elimination of leakage of toxic/corrosive liquid electrolytes and their capability to withstand elevated mechanical stresses. Nevertheless, the spread of FSSSCs requires the development of durable and highly conductive solid-state electrolytes, whose electrochemical characteristics must be competitive with those of traditional liquid electrolytes. Here, we propose an innovative composite solid-state electrolyte prepared by incorporating metallic two-dimensional group-5 transition metal dichalcogenides, namely, liquid-phase exfoliated functionalized niobium disulfide (f-NbS2) nanoflakes, into a sulfonated poly(ether ether ketone) (SPEEK) polymeric matrix. The terminal sulfonate groups in f-NbS2 nanoflakes interact with the sulfonic acid groups of SPEEK by forming a robust hydrogen bonding network. Consequently, the composite solid-state electrolyte is mechanically/dimensionally stable even at a degree of sulfonation of SPEEK as high as 70.2%. At this degree of sulfonation, the mechanical strength is 38.3 MPa, and thanks to an efficient proton transport through the Grotthuss mechanism, the proton conductivity is as high as 94.4 mS cm-1 at room temperature. To elucidate the importance of the interaction between the electrode materials (including active materials and binders) and the solid-state electrolyte, solid-state supercapacitors were produced using SPEEK and poly(vinylidene fluoride) as proton conducting and nonconducting binders, respectively. The use of our solid-state electrolyte in combination with proton-conducting SPEEK binder and carbonaceous electrode materials (mixture of activated carbon, single/few-layer graphene, and carbon black) results in a solid-state supercapacitor with a specific capacitance of 116 F g-1 at 0.02 A g-1, optimal rate capability (76 F g-1 at 10 A g-1), and electrochemical stability during galvanostatic charge/discharge cycling and folding/bending stresses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA