Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Development ; 148(1)2021 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-33298463

RESUMO

Drosophila sensory organ precursors divide asymmetrically to generate pIIa/pIIb cells, the identity of which relies on activation of Notch at cytokinesis. Although Notch is present apically and basally relative to the midbody at the pIIa-pIIb interface, the basal pool of Notch is reported to be the main contributor for Notch activation in the pIIa cell. Intra-lineage signalling requires appropriate apico-basal targeting of Notch, its ligand Delta and its trafficking partner Sanpodo. We have previously reported that AP-1 and Stratum regulate the trafficking of Notch and Sanpodo from the trans-Golgi network to the basolateral membrane. Loss of AP-1 or Stratum caused mild Notch gain-of-function phenotypes. Here, we report that their concomitant loss results in a penetrant Notch gain-of-function phenotype, indicating that they control parallel pathways. Although unequal partitioning of cell fate determinants and cell polarity were unaffected, we observed increased amounts of signalling-competent Notch as well as Delta and Sanpodo at the apical pIIa-pIIb interface, at the expense of the basal pool of Notch. We propose that AP-1 and Stratum operate in parallel pathways to localize Notch and control where receptor activation takes place.


Assuntos
Complexo 1 de Proteínas Adaptadoras/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Receptores Notch/metabolismo , Órgãos dos Sentidos/metabolismo , Células-Tronco/metabolismo , Animais , Linhagem da Célula , Núcleo Celular/metabolismo , Polaridade Celular , Mutação com Ganho de Função , Penetrância , Fenótipo
2.
Development ; 145(13)2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29967125

RESUMO

In Drosophila, the sensory organ precursor (SOP or pI cell) divides asymmetrically to give birth to daughter cells, the fates of which are governed by the differential activation of the Notch pathway. Proteolytic activation of Notch induced by ligand is based on the correct polarized sorting and localization of the Notch ligand Delta, the Notch receptor and its trafficking partner Sanpodo (Spdo). Here, we have identified Stratum (Strat), a presumptive guanine nucleotide exchange factor for Rab GTPases, as a regulator of Notch activation. Loss of Strat causes cell fate transformations associated with an accumulation of Notch, Delta and Spdo in the trans-Golgi network (TGN), and an apical accumulation of Spdo. The strat mutant phenotype is rescued by the catalytically active as well as the wild-type form of Rab8, suggesting a chaperone function for Strat rather than that of exchange factor. Strat is required to localize Rab8 at the TGN, and rab8 phenocopies strat We propose that Strat and Rab8 act at the exit of the Golgi apparatus to regulate the sorting and the polarized distribution of Notch, Delta and Spdo.


Assuntos
Proteínas de Drosophila/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Receptores Notch/metabolismo , Rede trans-Golgi/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , GTP Fosfo-Hidrolases/genética , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Transporte Proteico/fisiologia , Receptores Notch/genética , Rede trans-Golgi/genética
3.
Dis Model Mech ; 15(3)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35344037

RESUMO

Whole-body health relies on complex inter-organ signalling networks that enable organisms to adapt to environmental perturbations and to changes in tissue homeostasis. The intestine plays a major role as a signalling centre by producing local and systemic signals that are relayed to the body and that maintain intestinal and organismal homeostasis. Consequently, disruption of intestinal homeostasis and signalling are associated with systemic diseases and multi-organ dysfunction. In recent years, the fruit fly Drosophila melanogaster has emerged as a prime model organism to study tissue-intrinsic and systemic signalling networks of the adult intestine due to its genetic tractability and functional conservation with mammals. In this Review, we highlight Drosophila research that has contributed to our understanding of how the adult intestine interacts with its microenvironment and with distant organs. We discuss the implications of these findings for understanding intestinal and whole-body pathophysiology, and how future Drosophila studies might advance our knowledge of the complex interplay between the intestine and the rest of the body in health and disease.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Drosophila melanogaster/genética , Homeostase , Intestinos/fisiologia , Mamíferos , Transdução de Sinais/genética
4.
Elife ; 102021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34596529

RESUMO

In multiple cell lineages, Delta-Notch signalling regulates cell fate decisions owing to unidirectional signalling between daughter cells. In Drosophila pupal sensory organ lineage, Notch regulates the intra-lineage pIIa/pIIb fate decision at cytokinesis. Notch and Delta that localise apically and basally at the pIIa-pIIb interface are expressed at low levels and their residence time at the plasma membrane is in the order of minutes. How Delta can effectively interact with Notch to trigger signalling from a large plasma membrane area remains poorly understood. Here, we report that the signalling interface possesses a unique apico-basal polarity with Par3/Bazooka localising in the form of nano-clusters at the apical and basal level. Notch is preferentially targeted to the pIIa-pIIb interface, where it co-clusters with Bazooka and its cofactor Sanpodo. Clusters whose assembly relies on Bazooka and Sanpodo activities are also positive for Neuralized, the E3 ligase required for Delta activity. We propose that the nano-clusters act as snap buttons at the new pIIa-pIIb interface to allow efficient intra-lineage signalling.


Assuntos
Divisão Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Receptores Notch/metabolismo , Órgãos dos Sentidos/metabolismo , Células-Tronco/metabolismo , Animais , Animais Geneticamente Modificados , Linhagem da Célula , Polaridade Celular , Citocinese , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Receptores Notch/genética , Órgãos dos Sentidos/citologia , Transdução de Sinais , Fatores de Tempo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
5.
Sci Adv ; 7(45): eabf4647, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34739323

RESUMO

Migrating cells navigate in complex environments through sensing and interpreting biochemical and/or mechanical cues. Here, we report that recently identified tubular clathrin/AP-2 lattices (TCALs), a subset of clathrin-coated structures (CCSs) that pinch collagen fibers, mechanically control directed migration along fibers decorated with ligands of CCS cargoes in three-dimensional (3D) environments. We observed that epidermal growth factor or low-density lipoprotein bound to collagen fibers leads to increased local nucleation and accumulation of TCALs. By using engineered, mixed collagen networks, we demonstrate that this mechanism selectively increases local forces applied on ligand-decorated fibers. We show that these effects depend on the ligand's receptors but do not rely on their ability to trigger signaling events. We propose that the preferential accumulation of TCALs along ligand-decorated fibers steers migration in 3D environments. We conclude that ligand-regulated, local TCAL accumulation results in asymmetric force distribution that orients cell migration in 3D environments.

6.
Elife ; 102021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34096503

RESUMO

RAS-like (RAL) GTPases function in Wnt signalling-dependent intestinal stem cell proliferation and regeneration. Whether RAL proteins work as canonical RAS effectors in the intestine and the mechanisms of how they contribute to tumourigenesis remain unclear. Here, we show that RAL GTPases are necessary and sufficient to activate EGFR/MAPK signalling in the intestine, via induction of EGFR internalisation. Knocking down Drosophila RalA from intestinal stem and progenitor cells leads to increased levels of plasma membrane-associated EGFR and decreased MAPK pathway activation. Importantly, in addition to influencing stem cell proliferation during damage-induced intestinal regeneration, this role of RAL GTPases impacts on EGFR-dependent tumourigenic growth in the intestine and in human mammary epithelium. However, the effect of oncogenic RAS in the intestine is independent from RAL function. Altogether, our results reveal previously unrecognised cellular and molecular contexts where RAL GTPases become essential mediators of adult tissue homeostasis and malignant transformation.


Assuntos
Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Receptores ErbB/metabolismo , Mucosa Intestinal/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Receptores de Peptídeos de Invertebrados/metabolismo , Células-Tronco/metabolismo , Proteínas ral de Ligação ao GTP/metabolismo , Animais , Animais Geneticamente Modificados , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Endocitose , Receptores ErbB/genética , Feminino , Humanos , Hiperplasia , Mucosa Intestinal/patologia , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Glândulas Mamárias Humanas/enzimologia , Glândulas Mamárias Humanas/patologia , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Monoméricas de Ligação ao GTP/genética , Receptores de Peptídeos de Invertebrados/genética , Transdução de Sinais , Células-Tronco/patologia , Proteínas ral de Ligação ao GTP/genética
7.
Dev Cell ; 53(2): 131-132, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32315607

RESUMO

Stem cells drive tissue regeneration due to their capacity to proliferate and differentiate in response to damage. In this issue of Developmental cell, Du et al. reveal a mechanism regulating intestinal stem cell differentiation and epithelial repair following injury, which depends on peroxisomes and their action inducing JAK/Stat signaling and Sox21a.


Assuntos
Janus Quinases , Fatores de Transcrição STAT , Diferenciação Celular , Intestinos , Janus Quinases/metabolismo , Peroxissomos , Fatores de Transcrição STAT/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA