Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(8): 5433-5444, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38374731

RESUMO

Designing materials for catalysis is challenging because the performance is governed by an intricate interplay of various multiscale phenomena, such as the chemical reactions on surfaces and the materials' restructuring during the catalytic process. In the case of supported catalysts, the role of the support material can be also crucial. Here, we address this intricacy challenge by a symbolic-regression artificial intelligence (AI) approach. We identify the key physicochemical parameters correlated with the measured performance, out of many offered candidate parameters characterizing the materials, reaction environment, and possibly relevant underlying phenomena. Importantly, these parameters are obtained by both experiments and ab initio simulations. The identified key parameters might be called "materials genes", in analogy to genes in biology: they correlate with the property or function of interest, but the explicit physical relationship is not (necessarily) known. To demonstrate the approach, we investigate the CO2 hydrogenation catalyzed by cobalt nanoparticles supported on silica. Crucially, the silica support is modified with the additive metals magnesium, calcium, titanium, aluminum, or zirconium, which results in six materials with significantly different performances. These systems mimic hydrothermal vents, which might have produced the first organic molecules on Earth. The key parameters correlated with the CH3OH selectivity reflect the reducibility of cobalt species, the adsorption strength of reaction intermediates, and the chemical nature of the additive metal. By using an AI model trained on basic elemental properties of the additive metals (e.g., ionization potential) as physicochemical parameters, new additives are suggested. The predicted CH3OH selectivity of cobalt catalysts supported on silica modified with vanadium and zinc is confirmed by new experiments.

2.
Angew Chem Int Ed Engl ; 62(22): e202218189, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-36951652

RESUMO

Abiotic synthesis of formate and short hydrocarbons takes place in serpentinizing vents where some members of vent microbial communities live on abiotic formate as their main carbon source. To better understand the catalytic properties of Ni-Fe minerals that naturally exist in hydrothermal vents, we have investigated the ability of synthetic Ni-Fe based nanoparticular solids to catalyze the H2 -dependent reduction of CO2 , the first step required for the beginning of pre-biotic chemistry. Mono and bimetallic Ni-Fe nanoparticles with varied Ni-to-Fe ratios transform CO2 and H2 into intermediates and products of the acetyl-coenzyme A pathway-formate, acetate, and pyruvate-in mM range under mild hydrothermal conditions. Furthermore, Ni-Fe catalysts converted CO2 to similar products without molecular H2 by using water as a hydrogen source. Both CO2 chemisorption analysis and post-reaction characterization of materials indicate that Ni and Fe metals play complementary roles for CO2 fixation.

3.
J Am Chem Soc ; 144(46): 21232-21243, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36350298

RESUMO

Serpentinizing hydrothermal systems generate H2 as a reductant and harbor catalysts conducive to geochemical CO2 conversion into reduced carbon compounds that form the core of microbial autotrophic metabolism. This study characterizes mineral catalysts at hydrothermal vents by investigating the interactions between catalytically active cobalt sites and silica-based support materials on H2-dependent CO2 reduction. Heteroatom incorporated (Mg, Al, Ca, Ti, and Zr), ordered mesoporous silicas are applied as model support systems for the cobalt-based catalysts. It is demonstrated that all catalysts surveyed convert CO2 to methane, methanol, carbon monoxide, and low-molecular-weight hydrocarbons at 180 °C and 20 bar, but with different activity and selectivity depending on the support modification. The additional analysis of the condensed product phase reveals the formation of oxygenates such as formate and acetate, which are key intermediates in the ancient acetyl-coenzyme A pathway of carbon metabolism. The Ti-incorporated catalyst yielded the highest concentrations of formate (3.6 mM) and acetate (1.2 mM) in the liquid phase. Chemisorption experiments including H2 temperature-programmed reduction (TPR) and CO2 temperature-programmed desorption (TPD) in agreement with density functional theory (DFT) calculations of the adsorption energy of CO2 suggest metallic cobalt as the preferential adsorption site for CO2 compared to hardly reducible cobalt-metal oxide interface species. The ratios of the respective cobalt species vary depending on the interaction strength with the support materials. The findings reveal robust and biologically relevant catalytic activities of silica-based transition metal minerals in H2-rich CO2 fixation, in line with the idea that autotrophic metabolism emerged at hydrothermal vents.


Assuntos
Dióxido de Carbono , Dióxido de Silício , Dióxido de Carbono/química , Titânio , Cobalto/química , Formiatos , Acetatos
4.
Nat Commun ; 14(1): 570, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732515

RESUMO

The chemical reactions that formed the building blocks of life at origins required catalysts, whereby the nature of those catalysts influenced the type of products that accumulated. Recent investigations have shown that at 100 °C awaruite, a Ni3Fe alloy that naturally occurs in serpentinizing systems, is an efficient catalyst for CO2 conversion to formate, acetate, and pyruvate. These products are identical with the intermediates and products of the acetyl-CoA pathway, the most ancient CO2 fixation pathway and the backbone of carbon metabolism in H2-dependent autotrophic microbes. Here, we show that Ni3Fe nanoparticles prepared via the hard-templating method catalyze the conversion of H2 and CO2 to formate, acetate and pyruvate at 25 °C under 25 bar. Furthermore, the 13C-labeled pyruvate can be further converted to acetate, parapyruvate, and citramalate over Ni, Fe, and Ni3Fe nanoparticles at room temperature within one hour. These findings strongly suggest that awaruite can catalyze both the formation of citramalate, the C5 product of pyruvate condensation with acetyl-CoA in microbial carbon metabolism, from pyruvate and the formation of pyruvate from CO2 at very moderate reaction conditions without organic catalysts. These results align well with theories for an autotrophic origin of microbial metabolism under hydrothermal vent conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA