Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Cytokine ; 137: 155315, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33011401

RESUMO

In the present investigation, the serum changes of sTWEAK levels, a multifunctional cytokine involved in tissue response to acute injury and inflammation, and of its scavenger receptor sCD163, were monitored for the first time in ultramarathon athletes running the 24-h competition, an extremely demanding race in terms of muscular and physiological exertion. To this aim, venous blood samples were collected from each participant (n = 22, M = 12, F = 10) both before and immediately after the 24-h running. Other than sTWEAK and sCD163, the common serum biomarkers of inflammation (namely CRP and IL-6) and tissue injury (such as CPK, LDH, CPK-MB, troponin-I, and NT-proBNP) were evaluated. All parameters were within the reference ranges at baseline, indicating no alterations of the normal physiological processes before the competition; on the contrary, most biomarkers of tissue damage and inflammation strongly increased after the ultramarathon race. Interestingly, a significant decrement of sTWEAK levels associated with an increment of its scavenger receptor sCD163 was observed at post-race. Positive relationships were evidenced between IL-6 and sCD163 levels and the markers of cardiac damage troponin-I and NT-proBNP. On the contrary, sTWEAK showed an inverse correlation with IL-6 and NT-proBNP. This study opens the way to further investigations aimed at clarifying the role of TWEAK pathway during the prolonged ultraendurance activity, paying particular attention to the link of IL-6, CD163 and TWEAK with the cardiac function.


Assuntos
Antígenos CD/sangue , Antígenos de Diferenciação Mielomonocítica/sangue , Atletas , Citocina TWEAK/sangue , Receptores de Superfície Celular/sangue , Receptores Depuradores/sangue , Corrida/fisiologia , Adulto , Biomarcadores/sangue , Feminino , Humanos , Inflamação/sangue , Interleucina-6/sangue , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Fatores de Tempo
2.
Beilstein J Org Chem ; 16: 1606-1616, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32704327

RESUMO

Dihydroberberine (DHBER), the partially reduced form of the alkaloid berberine (BER), is known to exhibit important biological activities. Despite this fact, there have been only few studies that concern the biological properties of functionalized DHBER. Attracted by the potentiality of this latter compound, we have realized the preparation of new arylhydrazono-functionalized DHBERs, starting from BER and some α-bromohydrazones. On the other hand, also the fully reduced form of BER, namely tetrahydroberberine (THBER), and its derivatives have proven to present different biological activities. Therefore, the obtained arylhydrazono-functionalized DHBERs were reduced to the corresponding arylhydrazono-THBERs. The antiproliferative activity of both arylhydrazono-DHBERs and -THBERs has been evaluated on NCI-H1975 lung cancer cells.

3.
Bioorg Med Chem ; 26(18): 5037-5044, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30196978

RESUMO

Tetrahydroberberine (THB), otherwise known as canadine, is a natural alkaloid showing significant pharmacological properties and antioxidant protection against oxidative damage. Herein, we synthetized structurally complex THB analogues, namely pyrrolino-tetrahydroberberines (PTHBs) 4a-g, containing the pyrrolino[2,3-b]pyridine system, by means of the reactions of 1,2-diaza-1,3-dienes and 7,8-dihydroberberine. Aim of the study was to explore the in vitro antioxidant properties of PTHBs in comparison to THB thus to identify the most effective against free radical-induced oxidative injury, by using three different antioxidant tests: the ORAC method, the DNA nicking assay, and the DCFH-DA cellular assay. As a result, PTHB 4d emerged among the other THB analogues by exhibiting the best antioxidant properties. First, it was the only compound having an ORAC value completely comparable to that of THB, indicating the same ability to neutralize peroxyl radicals. Secondly, 4d showed an even better antioxidant capacity than THB in protecting DNA against ferrous ion-induced strand breaks. These observations were also confirmed in NCTC-2544 human keratinocytes exposed to hydrogen peroxide. Indeed, 4d protected cells against oxidation more efficiently than THB both in the short (1 and 3 h) and long (24 h) period of incubation, possibly suggesting increased cell membrane permeability and/or intracellular stability of 4d as compared to THB.


Assuntos
Antioxidantes/farmacologia , Berberina/análogos & derivados , Pirróis/farmacologia , Antioxidantes/síntese química , Antioxidantes/química , Berberina/síntese química , Berberina/química , Berberina/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , DNA/efeitos dos fármacos , Quebras de DNA , Relação Dose-Resposta a Droga , Compostos Ferrosos/antagonistas & inibidores , Compostos Ferrosos/farmacologia , Radicais Livres/antagonistas & inibidores , Radicais Livres/farmacologia , Humanos , Peróxido de Hidrogênio/farmacologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Estrutura Molecular , Pirróis/síntese química , Pirróis/química , Relação Estrutura-Atividade
4.
J Enzyme Inhib Med Chem ; 31(6): 1492-7, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26903444

RESUMO

OBJECTIVE: The purpose of this study was to investigate the in vitro inhibitory effects of the edible microalga Aphanizomenon flos-aquae (AFA) on human UDP-α-d-glucose 6-dehydrogenase (UGDH) activity, a cytosolic enzyme involved both in tumor progression and in phytochemical bioavailability. METHODS: Both the hydrophilic and ethanolic AFA extracts as well as the constitutive active principles phycocyanin (PC), phycocyanobilin (PCB) and mycosporine-like amino acids (MAAs) were tested. RESULTS: Among AFA components, PCB presented the strongest inhibitory effect on UGDH activity, acting as a competitive inhibitor with respect to UDP-glucose and a non-competitive inhibitor with respect to NAD(+). In preliminary experiments, AFA PCB was also effective in reducing the colony formation capacity of PC-3 prostate cancer cells and FTC-133 thyroid cancer cells. CONCLUSIONS: Overall, these findings confirmed that AFA and its active principles are natural compounds with high biological activity. Further studies evaluating the effects of AFA PCB in reducing tumor cell growth and phytochemical glucuronidation are encouraged.


Assuntos
Aphanizomenon/química , Inibidores Enzimáticos/farmacologia , Uridina Difosfato Glucose Desidrogenase/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino
5.
Reprod Biomed Online ; 29(1): 65-71, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24813757

RESUMO

Ovarian stimulation is used with IVF/intracytoplasmic sperm injection (ICSI) cycles to obtain multiple oocytes and improve pregnancy rates; however, it also induces perturbation in the oxidant-antioxidant balance leading to oxidation stress. The present study monitored the plasma antioxidant status in women undergoing a long agonist protocol of ovarian stimulation at three different time points: at baseline (T0), after pituitary suppression (T1) and on the day of oocyte retrieval (T2). The antioxidant composition of follicular fluid samples collected on T2 was also evaluated. Significant decreases (P < 0.05) of plasma vitamin C, vitamin E and carotenoids were found between T1 and T2 but not between T0 and T1. At T2, high plasma vitamin E was associated with high numbers of total and mature oocytes retrieved per patient, which, in turn, were favourable for achieving pregnancy. Accordingly, women who became pregnant presented higher vitamin E concentrations both in plasma and FF than those who did not. In conclusion, this study confirmed the occurrence of significant modifications of the plasma antioxidant profile during ovarian stimulation with gonadotrophins; at the same time, it was found that both systemic and follicular antioxidant status may be related to IVF/ICSI outcome.


Assuntos
Antioxidantes/metabolismo , Gonadotropinas/efeitos adversos , Indução da Ovulação/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Adulto , Ácido Ascórbico/metabolismo , Carotenoides/metabolismo , Feminino , Fertilização in vitro/métodos , Líquido Folicular/metabolismo , Gonadotropinas/farmacologia , Humanos , Plasma/metabolismo , Gravidez , Taxa de Gravidez , Vitamina E/metabolismo
6.
Clin Lab ; 60(3): 475-82, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24697125

RESUMO

BACKGROUND: The defense against damaging attack at mouth level caused by reactive species, in particular reactive oxygen species (ROS), is guaranteed by saliva, the main constituent of the antioxidant barrier. The aim of the performed tests was to establish the precision, linearity, and accuracy of the new patented test, SAT, on saliva samples taken from healthy volunteers. The analysis also provided useful information on storage conditions of the sample at low temperatures and on the normality range and defined the influences of interferences (in particular phosphates) in the determination. METHODS: Sixty apparently healthy volunteers were selected to verify the antioxidant capacity of the oral cavity using the new patented SAT method. RESULTS: SAT performed on 70 saliva samples demonstrated that the test was precise, linear (R = 0.9994), accurate, and reproducible (CV 4.39%). The SAT values in the saliva samples analyzed had a normal distribution with a control range for healthy subjects of 947-1459 micromol/L. The fundamental presence of a particular salt in the SAT solutions allowed avoidance of phosphate interference and eliminated false positives. CONCLUSIONS: SAT can be considered an important predictive test not only for periodontal disease, caries, gingivitis, and general pathologies related to oral cavity, but also for systemic diseases such as: cardiovascular diseases, diabetes, Alzheimer's disease, and others.


Assuntos
Antioxidantes/metabolismo , Ferro/metabolismo , Saliva/metabolismo , Adulto , Feminino , Humanos , Masculino
7.
Toxicol In Vitro ; 93: 105705, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37775061

RESUMO

Essential oils (EOs) are natural products that have gained wide interest due to their biological activities and anticancer properties through various mechanisms. The present study aimed to test the cytotoxicity of Thymus vulgaris L. (thyme) EO of Italian origin, rich in thymol (49.6%) and p-cymene (18.8%), towards the triple-negative breast cancer cell line MDA-MB-231 and to investigate the biochemical mechanisms underlying its antitumor activity. Thyme EO reduced cancer cell viability in a dose-dependent manner after 24 h treatment, with an IC50 value equal to 75.1 ± 15.2 µg/ml; simultaneously, the inhibition of cancer cell migration and colony formation capacity was evidenced. Thyme EO antiproliferative effects were related to the induction of apoptosis as demonstrated by the increased expression of the pro-apoptotic proteins Bax, cleaved caspase-3, phospho-p53, and SMAC/Diablo and by the reduction of the anti-apoptotic proteins Bcl-2, cIAP-1, cIAP-2, HIF-1α, survivin, and XIAP. Thyme EO administration led to the early formation of intracellular ROS, followed by the increment of MDA as an index of lipid peroxidation and by the decreased expression of the antioxidant enzymes catalase and PON2. The upregulation of Nrf2 mRNA expression and the strong induction of HO-1 sustained the activation of the Nrf2 pathway by thyme EO. These data showed that the EO from Thymus vulgaris L. might inhibit the malignant phenotype of MDA-MB-231, thus suggesting potential benefits against human triple-negative breast cancer.


Assuntos
Antineoplásicos , Neoplasias da Mama , Óleos Voláteis , Thymus (Planta) , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Thymus (Planta)/química , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Fator 2 Relacionado a NF-E2 , Óleos Voláteis/farmacologia , Apoptose , Antineoplásicos/farmacologia , Proteínas Reguladoras de Apoptose/genética , Linhagem Celular Tumoral
8.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-37259288

RESUMO

A small library of 6-O-sucrose monoester surfactants has been synthesized and tested against various microorganisms. The synthetic procedure involved a modified Mitsunobu reaction, which showed improved results compared to those present in the literature (higher yields and larger scope). The antifungal activities of most of these glycolipids were satisfactory. In particular, sucrose palmitoleate (URB1537) showed good activity against Candida albicans ATCC 10231, Fusarium spp., and Aspergillus fumigatus IDRAH01 (MIC value: 16, 32, 64 µg/mL, respectively), and was further characterized through radical scavenging, anti-inflammatory, and biocompatibility tests. URB1537 has been shown to control the inflammatory response and to have a safe profile.

9.
Adv Biol Regul ; 89: 100973, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37257289

RESUMO

Highly mutable influenza is successfully countered based on individual susceptibility and similar precision-like medicine approach should be effective against SARS-COV-2. Among predictive markers to bring precision medicine to COVID-19, circulating ACE2 has potential features being upregulated in both severe COVID-19 and predisposing comorbidities. Spike SARS-CoVs were shown to induce ADAM17-mediated shedding of enzymatic active ACE2, thus accounting for its increased activity that has also been suggested to induce positive feedback loops leading to COVID-19-like manifestations. For this reason, pre-existing ACE2 activity and inhibition of ACE2/ADAM17 zinc-metalloproteases through zinc chelating agents have been proposed to predict COVID-19 outcome before infection and to protect from COVID-19, respectively. Since most diagnostic laboratories are not equipped for enzymatic activity determination, other potential predictive markers of disease progression exploitable by diagnostic laboratories were explored. Concentrations of circulating albumin, zinc, ACE2 protein and its activity were investigated in healthy, diabetic (COVID-19-susceptible) and SARS-CoV-2-negative COVID-19 individuals. ACE2 both protein levels and activity significantly increased in COVID-19 and diabetic patients. Abnormal high levels of ACE2 characterised a subgroup (16-19%) of diabetics, while COVID-19 patients were characterised by significantly higher zinc/albumin ratios, pointing to a relative increase of albumin-unbound zinc species, such as free zinc ones. Data on circulating ACE2 levels are in line with the hypothesis that they can drive susceptibility to COVID-19 and elevated zinc/albumin ratios support the therapeutic use of zinc chelating inhibitors of ACE2/ADAM17 zinc-metalloproteases in a targeted therapy for COVID-19.


Assuntos
COVID-19 , Humanos , COVID-19/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Sistema Renina-Angiotensina/fisiologia , Enzima de Conversão de Angiotensina 2/genética , Peptidil Dipeptidase A , Medicina de Precisão , Zinco/uso terapêutico , Albuminas/metabolismo , Biomarcadores
10.
Colloids Surf B Biointerfaces ; 232: 113596, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37918304

RESUMO

Lyotropic Liquid Crystalline (LLC) nanoparticles represent an emerging class of smart, biocompatible, and biodegradable systems for the delivery of drugs. Among these, structures with complex 3D architectures such as cubosomes are of particular interest. These are non- lamellar assemblies having hydrophobic and hydrophilic portions able to carry drugs of different nature. They can further be modulated including suitable additives to control the release of the active payload, and to promote an active targeting. Starting from monoolein (GMO) cubic phase, different concentrations of mannose-based esters were added, and the eventual structural modifications were monitored to ascertain the effects of the presence of glycolipids. Moreover, the structural properties of these nanosystems loaded with Dexamethasone (DEX), a very well-known anti-inflammatory steroid, were also studied. Experiments were carried out by synchrotron Small Angle X-ray Scattering (SAXS), Raman Microspectroscopy (RMS) and Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) measurements. The drug delivery potential (i.e. entrapment efficiency and release properties) of the obtained nanoparticles was evaluated. Finally, in vitro cytocompatibility and anti-inflammatory activity studies of the prepared formulations were carried out. Inclusion of mannose-based surfactants up to 10 mol% influenced the structural parameters of Im3m cubic phase and swollen cubic phases were obtained with the different glycolipids with lattice parameters significantly higher than GMO. A complete cytocompatibility and an increased DEX activity were observed, thus suggesting the possibility to use GMO/glycolipids nanoparticles to formulate innovative drug delivery systems.


Assuntos
Cristais Líquidos , Manose , Espalhamento a Baixo Ângulo , Difração de Raios X , Sistemas de Liberação de Medicamentos , Anti-Inflamatórios/farmacologia , Glicolipídeos , Cristais Líquidos/química
11.
Int J Pharm ; 647: 123489, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37805150

RESUMO

Fungal infections of the skin, nails, and hair are a common health concern affecting a significant proportion of the population worldwide. The current treatment options include topical and systematic agents which have low permeability and prolonged treatment period, respectively. Consequently, there is a growing need for a permeable, effective, and safe treatment. Keratin nanoparticles are a promising nanoformulation that can improve antifungal agent penetration, providing sustainable targeted drug delivery. In this study, keratin nanoparticles were prepared using a custom-made 3D-printed microfluidic chip and the manufacturing process was optimized using the design of experiments (DoE) approach. The total flow rate (TFR), flow rate ratio (FRR), and keratin concentration were found to be the most influential factors of the size and polydispersity index (PDI) of the nanoparticles. The crosslinking procedure by means of tannic acid as safe and biocompatible compound was also optimized. Keratin nanoparticles loaded with a different amount of tioconazole showed a size lower than 200 nm, a PDI lower than 0.2 and an encapsulation efficiency of 91 ± 1.9 %. Due to their sustained drug release, the formulations showed acceptable in vitro biocompatibility. Furthermore, a significant inhibitory effect compared to the free drug against Microsporum canis.


Assuntos
Microfluídica , Nanopartículas , Microfluídica/métodos , Queratinas , Sistemas de Liberação de Medicamentos/métodos , Imidazóis , Tamanho da Partícula
12.
Nutrients ; 15(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37432298

RESUMO

In our previous studies, Prunus spinosa fruit (PSF) ethanol extract was showed to exert antioxidant, antimicrobial, anti-inflammatory and wound healing activities. In the present study, an integrated bioinformatics analysis combined with experimental validation was carried out to investigate the biological mechanism(s) that are responsible for the reported PSF beneficial effects as an antioxidant during a pro-inflammatory TLR4 insult. Bioinformatics analysis using miRNet 2.0 was carried out to address which biological process(es) the extract could be involved in. In addition, Chemprop was employed to identify the key targets of nuclear receptor (NR) signaling and stress response (SR) pathways potentially modulated. The miRNet analysis suggested that the PSF extract mostly activates the biological process of cellular senescence. The Chemprop analysis predicted three possible targets for nine phytochemicals found in the extract: (i) ARE signaling, (ii) mitochondrial membrane potential (MMP) and (iii) p53 SR pathways. The PSF extract antioxidant effect was also experimentally validated in vitro using the human monocyte U937 cell line. Our findings showed that Nrf2 is modulated by the extract with a consequent reduction of the oxidative stress level. This was confirmed by a strong decrease in the amount of reactive oxygen species (ROS) observed in the PSF-treated cells subjected to lipopolysaccharide (LPS) (6 h treatment, 1 µg/mL). No visible effects were observed on p53 and MMP modulation.


Assuntos
Prunus , Transdução de Sinais , Prunus/química , Frutas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Biologia Computacional , Humanos , Células U937 , Transdução de Sinais/efeitos dos fármacos , Antioxidantes/farmacologia
13.
Reprod Biomed Online ; 25(3): 300-6, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22818093

RESUMO

Oxidative stress plays a fundamental role in the aetiology of male infertility by negatively affecting sperm quality and function. Assessment of blood and seminal plasma oxidative profiles might be a valuable tool to improve evaluation of sperm reproductive capacity and functional competence. This study examined the lipid-soluble antioxidant profile and levels of lipid peroxidation both in blood and seminal plasma samples of infertile and fertile males, in relation to semen parameters. Total antioxidant capacity (TAC) and vitamin E concentrations were significantly (P<0.05) lower in seminal plasma of infertile men compared with fertile subjects; concurrently, a significant accumulation of malondialdehyde was found in infertile patients (P=0.032 compared with controls), which was negatively correlated with sperm motility and morphology. In blood samples, infertile men presented lower concentrations of TAC, carotenoids and vitamin E than fertile subjects; TAC and carotenoids were positively correlated with sperm motility, morphology and concentration. Finally, blood TAC and vitamin E concentrations were positively correlated with the corresponding seminal values, confirming the close relationship between blood and semen antioxidants. All these results indicated the possibility of using not only seminal antioxidants but also blood antioxidants as biochemical markers to support sperm quality evaluation. Oxidative stress induced by reactive oxygen species (ROS) has been widely recognized as one of the major causes of male infertility; indeed, excessive ROS production can negatively impact sperm quality and function. The assessment of blood and seminal plasma oxidative profiles has been suggested as a valuable tool to improve the evaluation of sperm reproductive capacity and functional competence in infertile men. With this in mind, in the present study we examined the lipid soluble antioxidant profile (carotenoids and vitamins A and E) and the levels of lipid peroxidation (malondialdehyde; MDA) both in blood and seminal plasma samples of infertile and fertile males, in correlation with semen parameters namely motility, morphology and concentration. As a result, we obtained evidence that the total antioxidant capacity (TAC) and the concentrations of vitamin E of seminal plasma samples were significantly lower in infertile men than in fertile subjects; at the same time, a significant accumulation of MDA was found in infertile patients. MDA, in turn, negatively correlated with sperm motility and morphology, thus confirming that oxidative damage to lipids impairs sperm quality. In blood samples, infertile men presented lower TAC and lower concentrations of carotenoids and vitamin E than fertile subjects; interestingly, TAC and carotenoid concentrations were positively correlated with sperm motility, morphology, and concentration, confirming the close relationship between blood antioxidants and sperm quality. In conclusion, all these results suggested that the examination of blood and semen oxidative profiles might furnish useful information on sperm quality and function in infertile men.


Assuntos
Infertilidade Masculina/sangue , Espermatozoides/fisiologia , Adulto , Antioxidantes/metabolismo , Carotenoides/metabolismo , Fertilidade , Humanos , Peroxidação de Lipídeos , Masculino , Estresse Oxidativo , Espécies Reativas de Oxigênio , Análise de Regressão , Sêmen/metabolismo , Contagem de Espermatozoides , Motilidade dos Espermatozoides , Espermatozoides/patologia , Vitamina E/metabolismo , Vitaminas/metabolismo
14.
Pharmaceuticals (Basel) ; 15(4)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35455453

RESUMO

As a follow-up to our previous studies on glycolipid surfactants, a new molecule, that is lactose 6'-O-undecylenate (URB1418), was investigated. To this end, a practical synthesis and studies aimed at exploring its specific properties were carried out. URB1418 showed antifungal activities against Trichophyton rubrum F2 and Candida albicans ATCC 10231 (MIC 512 µg/mL) and no significant antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. At the same time, it presented anti-inflammatory properties, as documented by the dose-dependent reduction in LPS-induced NO release in RAW 264.7 cells, while a low antioxidant capacity in the range of concentrations tested (EC50 > 200 µM) was also observed. Moreover, URB1418 offers the advantage of being more stable than the reference polyunsaturated lactose esters and of being synthesized using a "green" procedure, involving an enzymatic method, high yield and low manufacturing cost. For all these reasons and the absence of toxicity (HaCaT cells), the new glycolipid presented herein could be considered an interesting compound for applications in various fields.

15.
Heliyon ; 8(9): e10642, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36158085

RESUMO

Aims: The well-documented relationship between sperm oxidation and male infertility strongly encourages the development of assays for reactive oxygen species detection in semen samples. The present study aims to apply the microplate-based 2',7'-dichlorofluorescein diacetate assay to the evaluation of oxidative stress in unprocessed whole semen, thus avoiding sample centrifugations and other manipulations that may cause significant reactive oxygen species increments. Main methods: The fluorescence assay consisted in the quantification of both intracellular and extracellular reactive oxygen species levels in unwashed semen specimens by using the probe 2',7'-dichlorofluorescein diacetate into a 96-well plate. The method was useful for the preliminary assessment of the oxidation levels of whole semen samples from men undergoing standard sperm analysis as well as to evaluate the effect of some pro-glutathione molecules on semen oxidative status. Key findings: The 2',7'-dichlorofluorescein diacetate assay was successfully adapted to the evaluation of oxidative stress in whole semen, effectively revealing the perturbation of the redox homeostasis of the sample. Accordingly, specimens with abnormal sperm parameters (n = 10) presented oxidation indexes significantly higher than those with normospermia (n = 10) [7729 (range 3407-12769) vs. 1356 (range 470-2711), p < 0.001]; in addition, semen oxidation indexes negatively correlated to sperm motility and morphology. Noteworthy, whole semen exposure to pro-glutathione compounds led to reduced semen oxidation levels and sperm protection against oxidative damage. Significance: Based on our pilot experimental data, the microplate-based 2',7'-dichlorofluorescein diacetate assay appears to be a convenient method for the detection of reactive oxygen species levels in whole semen samples, avoiding artifacts due to semen centrifugation steps. At the same time, the test could be a helpful tool for the basic and quick screening of antioxidant molecules able to preserve semen quality.

16.
Antioxidants (Basel) ; 11(7)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35883741

RESUMO

The biological properties of the human amniotic membrane (HAM) and its characteristic ability to be a reservoir of growth factors promoting wound healing make it an ideal biological dressing for the treatment of different clinical conditions, such as burns and non-healing wounds. However, the application of a preservation method on the HAM is required during banking to maintain biological tissue properties and to ensure the release overtime of protein content for its final clinical effectiveness after application on the wound bed. Although cryopreservation and freezing are methods widely used to maintain tissue properties, reactive oxygen species (ROS) are produced within tissue cellular components during their switching from frozen to thawed state. Consequently, these methods can lead to oxidative stress-induced cell injury, affecting tissue regenerative properties and its final clinical effectiveness. Taking advantage of the antioxidant activity of the natural compound quercetin, we used it to improve the antioxidant and regenerative properties of frozen or cryopreserved HAM tissues. In particular, we evaluated the oxidative damage (lipid peroxidation, malondialdehyde) as well as the regenerative/biological properties (bFGF growth factor release, wound healing closure, structure, and viability) of HAM tissue after its application. We identified the effectiveness of quercetin on both preservation methods to reduce oxidative damage, as well as its ability to enhance regenerative properties, while maintaining the unaltered structure and viability of HAM tissue. The use of quercetin described in this study appears able to counteract the side effects of cryopreservation and freezing methods related to oxidative stress, enhancing the regenerative properties of HAM. However, further investigations will need to be performed, starting from these promising results, to identify its beneficial effect when applied on burns or non-healing wounds.

17.
Antioxidants (Basel) ; 11(6)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35740044

RESUMO

Oxysterols are a family of 27-carbon cholesterol oxidation derivatives found in low-density lipoproteins (LDLs) and atherosclerotic plaques where they trigger several biological responses involved in the initiation and progression of atherosclerosis. Several pieces of evidence suggest that oxysterols contribute to endothelial dysfunction (ED) due to their ability to alter membrane fluidity and cell permeability leading to inflammation, oxidative stress and apoptosis. The present study aimed to investigate the molecular events occurring in human microvascular endothelial cells (HMEC-1) in response to autoxidation-generated 3ß-hydroxy-5ß-hydroxy-B-norcholestane-6ß-carboxaldehyde (SEC-B) exposure. Our results highlight that SEC-B rapidly activates HMEC-1 by inducing oxidative stress, nitric oxide (NO) production and pro-inflammatory cytokine release. Exposure to SEC-B up to 24 h results in persistent accumulation of the vasodilator NO paralleled by an upregulation of the endothelial nitric oxide synthase (eNOS) enzyme and downregulation of Caveolin-1 (Cav-1) protein levels. Moreover, reduced expression and extracellular release of the vasoconstrictor factor endothelin-1 (ET-1) are observed. Furthermore, SEC-B stimulates the expression of the cytokines interleukin-6 (IL-6) and tumor necrosis factor-like weak inducer of apoptosis (TWEAK). This proinflammatory state leads to increased monocyte recruitment on activated HMEC-1 cells. Our findings add new knowledge on the role of SEC-B in ED and further support its potential implication in atherosclerosis.

18.
Toxicol In Vitro ; 79: 105301, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34923092

RESUMO

The biochemical mechanisms by which the antiviral drug Acyclovir (ACV) may induce anticancer effects even without detecting human herpesviruses (HHVs) are still poorly understood. Herein, we investigated for the first time how NCI-H1975 non-small cell lung cancer cells responded in vitro to ACV administration by exploring mitochondrial damage and apoptosis induction. We confirmed ACV ability to cause the inhibition of cancer cell growth even without detecting intracellular HHVs; the drug also significantly inhibited the colony formation capacity of NCI-H1975 cells. Cell cycle analysis revealed an increase of the sub-G1 hypodiploid peak after ACV treatment; the activation of caspase-3 and the presence of DNA laddering sustained the capacity of the drug to induce apoptotic cell death. Regarding mitochondrial toxicity, a reduction of mitochondrial membrane potential, altered mitochondrial size and shape, and mtDNA damage were found after ACV administration. Furthermore, an increment of intracellular reactive oxygen species levels as well as the upregulation of NudT3 involved in DNA repair mechanisms were observed. Altogether, these findings suggest that mitochondria may be possible initial targets and/or sites of ACV cytotoxicity within cancer cells in the absence of intracellular HHVs.


Assuntos
Aciclovir/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dano ao DNA , DNA Mitocondrial/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
19.
Eur J Pharm Biopharm ; 178: 53-64, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35917863

RESUMO

Developing targeted drug delivery systems is an urgent need to decrease the side effects and increase the drug's efficiency. Most cancer cells show an increased sugar consumption compared to healthy cells due to the deregulation of sugar transporters. Consequently, liposomes, as a biocompatible nanocarrier, could be surface decorated by sugars to enhance drug targeting into cancer cells. Our work outlines a new strategy to easily manufacture sucrose decorated liposomes using sucrose stearate, a biocompatible and biodegradable non-ionic surfactant, with a scalable microfluidic approach. Sucrose decorated liposomes were loaded with berberine hydrochloride, a well-known phytochemical compound to investigate its effects on triple-negative breast cancer cells (MDA-MB-231). Using the microfluidic manufacturing system, we prepared berberine-loaded liposomes using a mixture of phosphatidylcholine and cholesterol with and without sucrose stearate with a size up to 140 nm and narrow polydispersity. Stability was confirmed for 90 days, and the in vitro release profile was evaluated. The formulations showed acceptable in vitro biocompatibility and significantly higher anti-proliferative effect on MDA-MB-231 cell line. These results have been confirmed by an increased uptake evaluated by flow cytometry and confocal microscopy. Taken together, our findings represent an innovative, easy, and scalable approach to obtain sugar decorated liposomal formulations without any surface-chemistry reactions. They can be potentially used as an anticancer targeted drug delivery system.


Assuntos
Berberina , Neoplasias de Mama Triplo Negativas , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Humanos , Lipossomos/química , Microfluídica , Sacarose
20.
Int J Pharm ; 616: 121508, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35123002

RESUMO

In recent years, researchers are exploring innovative green materials fabricated from renewable natural substances to meet formulation needs. Among them, biopolymers like chitosans and biosurfactants such as sugar fatty acid esters are of potential interest due to their biocompatibility, biodegradability, functionality, and cost-effectiveness. Both classes of biocompounds possess the ability to be efficiently employed in wound dressing to help physiological wound healing, which is a bioprocess involving uncontrolled oxidative damage and inflammation, with an associated high risk of infection. In this work, we synthesized two different sugar esters (i.e., lactose linoleate and lactose linolenate) that, in combination with chitosan and sucrose laurate, were evaluated in vitro for their cytocompatibility, anti-inflammatory, antioxidant, and antibacterial activities and in vivo as wound care agents. Emphasis on Wnt/ß-catenin associated machineries was also set. The newly designed lactose esters, sucrose ester, and chitosan possessed sole biological attributes, entailing considerable blending for convenient formulation of wound care products. In particular, the mixture composed of sucrose laurate (200 µM), lactose linoleate (100 µM), and chitosan (1%) assured its superiority in terms of efficient wound healing prospects in vivo together with the restoring of the Wnt/ß-catenin signaling pathway, compared with the marketed wound healing product (Healosol®), and single components as well. This innovative combination of biomaterials applied as wound dressing could effectively break new ground in skin wound care.


Assuntos
Quitosana , Antibacterianos , Bandagens , Ésteres , Açúcares , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA