RESUMO
BACKGROUND: Leishmania infantum is a protozoan parasite transmitted by phlebotomine sand flies that causes life-threatening disease in humans and dogs. The dog is the primary reservoir of the parasite and early diagnosis of canine leishmaniosis is crucial at the clinical and epidemiological level. The currently available serological tests for CanL diagnostic show limitations therefore the aim of the present study was to investigate the diagnostic performance of an indirect antibody ELISA based on the Leishmania infantum recombinant antigen PFR1 in asymptomatically infected dogs. One hundred fifty-six dogs including Leishmania-free experimental Beagles and pet dogs from England, Scotland and Leishmania-endemic Murcia in Spain, were tested with the assay. The later were also tested with two commercial L. infantum crude antigen ELISAs (INgezim and Civtest, respectively) and a real-time kinetoplast PCR test. RESULTS: Anti-PFR1 antibodies were detected in the four groups of dogs, and the mean log-transformed optical density (OD) values were lowest in Beagles and in dogs from England and highest among dogs from Murcia (p < 0.05). Using the highest OD in beagles as the PFR1 ELISA cut-off point, the estimated seroprevalence was 27% (14-40%) in dogs from Murcia, 4% (0-9%) in dogs from Scotland and 3% (0-8%) in dogs from England (p < 0.05). Seroprevalence in dogs from Murcia according to the INgezim and Civtest ELISAs were 24% (12-37%) and 31% (18-45%), respectively, whilst the prevalence of infection based on PCR in these dogs was 73% (60-86). The percentages of PFR1-positive dogs that tested negative on the INgezim and Civtest ELISAs were 30% and 35%, respectively, and all of them tested positive on the PCR test. Relative to the PCR, the specificity, sensitivity and area under the ROC curve of the PFR1 ELISA were 100%, 36% and 0.74 (0.63-0.86), respectively. CONCLUSIONS: The ability shown by the PFR1 ELISA to detect infected dogs that go undetected by the crude antigen ELISAs is clinically and epidemiologically useful and PFR1 could be considered a candidate for a multi-antigen-based immunoassay for early detection of L. infantum infected dogs.
Assuntos
Doenças do Cão/parasitologia , Ensaio de Imunoadsorção Enzimática/veterinária , Leishmaniose/veterinária , Animais , Anticorpos Antiprotozoários/imunologia , Doenças do Cão/diagnóstico , Doenças do Cão/imunologia , Cães , Ensaio de Imunoadsorção Enzimática/métodos , Leishmania infantum/imunologia , Leishmaniose/diagnóstico , Leishmaniose/imunologia , Proteínas Recombinantes/imunologia , Estudos Soroepidemiológicos , Espanha/epidemiologia , Reino UnidoRESUMO
Introduction: Chagas disease, caused by the Trypanosoma cruzi parasite infection, is a potentially life-threatening neglected tropical disease with a worldwide distribution. During the chronic phase of the disease, there exists a fragile balance between the host immune response and parasite replication that keeps patients in a clinically-silent asymptomatic stage for years or even decades. However, in 40% of patients, the disease progresses to clinical manifestations mainly affecting and compromising the cardiac system. Treatment is recommended in the chronic phase, although there are no early markers of its effectiveness. The aim of this study is to identify differential expression changes in genes involved in the immune response in antigen-restimulated PBMC from chronic patients with Chagas disease due to benznidazole treatment. Methods: Thus, high-throughput real-time qPCR analysis has been performed to simultaneously determine global changes in the expression of 106 genes involved in the immune response in asymptomatic (IND) and early cardiac manifestations (CCC I) Chagas disease patients pre- and post-treatment with benznidazole. Results and discussion: The results revealed that 7 out of the 106 analyzed genes were differentially expressed (4 up- and 3 downregulated) after treatment in IND patients and 15 out of 106 (3 up- and 12 downregulated) after treatment of early cardiac Chagas disease patients. Particularly in CCC I patients, regulation of the expression level of some of these genes towards a level similar to that of healthy subjects suggests a beneficial effect of treatment and supports recommendation of benznidazole administration to early cardiac Chagas disease patients. The data obtained also demonstrated that both in asymptomatic patients and in early cardiac chronic patients, after treatment with benznidazole there is a negative regulation of the proinflammatory and cytotoxic responses triggered as a consequence of T. cruzi infection and the persistence of the parasite. This downregulation of the immune response likely prevents marked tissue damage and healing in early cardiac patients, suggesting its positive effect in controlling the pathology.
Assuntos
Doença de Chagas , Nitroimidazóis , Trypanosoma cruzi , Humanos , Nitroimidazóis/uso terapêutico , Doença de Chagas/tratamento farmacológico , Doença de Chagas/imunologia , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/genética , Adulto , Masculino , Feminino , Pessoa de Meia-Idade , Tripanossomicidas/uso terapêutico , Tripanossomicidas/farmacologia , Leucócitos Mononucleares/imunologia , Doença Crônica , Perfilação da Expressão Gênica , Voluntários Saudáveis , Reação em Cadeia da Polimerase em Tempo RealRESUMO
BACKGROUND: Patients with chronic Chagas disease present marked clinical and immunological heterogeneity. During the disease, multiple immune mechanisms are activated to fight the parasite. The purpose of this study was to investigate the expression patterns of genes involved in relevant immunological processes throughout the disease in patients with chronic Chagas disease. METHODOLOGY/PRINCIPAL FINDINGS: High-throughput RT-qPCR with QuantStudio 12K Flex real-time PCR system was used to evaluate the expression of 106 immune-related genes in PBMC from a cohort of cardiac Chagas disease patients (CCC I), asymptomatic patients (IND) and healthy donors (HD) after being stimulated with T. cruzi soluble antigens. Principal component analysis (PCA), cluster analysis and volcano plots were used to identify differentially expressed genes. In addition, gene set enrichment analysis (GSEA) was employed to identify the enriched immunological pathways in which these genes are involved. PCA revealed the existence of a statistically divergent expression profile of the 36 genes correlated with PC1 between CCC I patients and HD (p < 0.0001). Differential gene expression analysis revealed upregulation of 41 genes (expression fold-change > 1.5) and downregulation of 14 genes (expression fold-change < 0.66) (p = 8.4x10-13 to p = 0.007) in CCC I patients versus HD. Furthermore, significant differences in the expression level of specific genes have been identified between CCC I and IND patients (8 up and 1 downregulated). GSEA showed that several upregulated genes in CCC I patients participate in immunological pathways such as antigen-dependent B cell activation, stress induction of HSP regulation, NO2-dependent IL12 pathway in NK cells, cytokines-inflammatory response and IL-10 anti-inflammatory signaling. CONCLUSIONS: Cardiac Chagas disease patients show an antigen-specific differential gene expression profile in which several relevant immunological pathways seem to be activated. Assessment of gene expression profiles reveal unique insights into the immune response that occurs along chronic Chagas disease.
Assuntos
Cardiomiopatia Chagásica , Doença de Chagas , Trypanosoma cruzi , Humanos , Trypanosoma cruzi/genética , Leucócitos Mononucleares , Doença de Chagas/parasitologia , Citocinas/metabolismo , Ativação Linfocitária , Cardiomiopatia Chagásica/genética , Doença CrônicaRESUMO
Chagas disease, caused by the protozoan Trypanosoma cruzi, affects more than 6 million people worldwide. Following a mostly asymptomatic acute phase, the disease progresses to a long-lasting chronic phase throughout which life-threatening disorders to the heart and/or gastrointestinal tract will manifest in about 30% of those chronically infected. During the chronic phase, the parasitemia is low and intermittent, while a high level of anti-T. cruzi antibodies persist for years. These two features hamper post-chemotherapeutic follow-up of patients with the tools available. The lack of biomarkers for timely assessment of therapeutic response discourages a greater use of the two available anti-parasitic drugs, and complicates the evaluation of new drugs in clinical trials. Herein, we investigated in a blinded case-control study the serological reactivity over time of a group of parasite-derived antigens to potentially address follow up of T. cruzi chronically infected subjects after treatment. We tested PFR2, KMP11, HSP70, 3973, F29 and the InfYnity multiplexed antigenic array, by means of serological assays on a multi-national retrospective collection of samples. Some of the antigens exhibited promising results, underscoring the need for further studies to determine their potential role as treatment response biomarkers.