Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 16(5)2016 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-27213382

RESUMO

High-throughput screening (HTS) using ion channel recording is a powerful drug discovery technique in pharmacology. Ion channel recording with planar bilayer lipid membranes (BLM) is scalable and has very high sensitivity. A HTS system based on BLM ion channel recording faces three main challenges: (i) design of scalable microfluidic devices; (ii) design of compact ultra-low-noise transimpedance amplifiers able to detect currents in the pA range with bandwidth >10 kHz; (iii) design of compact, robust and scalable systems that integrate these two elements. This paper presents a low-noise transimpedance amplifier with integrated A/D conversion realized in CMOS 0.35 µm technology. The CMOS amplifier acquires currents in the range ±200 pA and ±20 nA, with 100 kHz bandwidth while dissipating 41 mW. An integrated digital offset compensation loop balances any voltage offsets from Ag/AgCl electrodes. The measured open-input input-referred noise current is as low as 4 fA/√Hz at ±200 pA range. The current amplifier is embedded in an integrated platform, together with a microfluidic device, for current recording from ion channels. Gramicidin-A, α-haemolysin and KcsA potassium channels have been used to prove both the platform and the current-to-digital converter.


Assuntos
Técnicas Biossensoriais/métodos , Ensaios de Triagem em Larga Escala/métodos , Canais Iônicos/isolamento & purificação , Bicamadas Lipídicas/química , Descoberta de Drogas/métodos , Humanos , Canais Iônicos/química , Dispositivos Lab-On-A-Chip
2.
J Mol Cell Cardiol ; 79: 187-94, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25446181

RESUMO

In the present work Action-Potential clamp (APC) and Dynamic clamp (DC) were used in combination in order to optimize the Luo-Rudy (LRd) mathematical formulation of the guinea-pig rapid delayed rectifier K(+) current (IKr), and to validate the optimized model. To this end, IKr model parameters were adjusted to fit the experimental E4031-sensitive current (IE4031) recorded under APC in guinea-pig myocytes. Currents generated by LRd model (ILRd) and the optimized one (IOpt) were then compared by testing their suitability to replace IE4031 under DC. Under APC, ILRd was significantly larger than IE4031 (mean current densities 0.51±0.01 vs 0.21±0.05pA/pF; p<0.001), mainly because of different rectification. IOpt mean density (0.17±0.01pA/pF) was similar to the IE4031 one (NS); moreover, IOpt accurately reproduced IE4031 distribution along the different AP phases. Models were then compared under DC by blocking native IKr (5µM E4031) and replacing it with ILRd or IOpt. Whereas injection of ILRd overshortened AP duration (APD90) (by 25% of its pre-block value), IOpt injection restored AP morphology and duration to overlap pre-block values. This study highlights the power of APC and DC for the identification of reliable formulations of ionic current models. An optimized model of IKr has been obtained which fully reversed E4031 effects on the AP. The model strongly diverged from the widely used Luo-Rudy formulation; this can be particularly relevant to the in silico analysis of AP prolongation caused by IKr blocking or alterations.


Assuntos
Potenciais de Ação/fisiologia , Simulação por Computador , Canais de Potássio de Retificação Tardia/metabolismo , Coração/fisiologia , Ativação do Canal Iônico , Modelos Biológicos , Técnicas de Patch-Clamp , Animais , Cobaias , Cinética , Reprodutibilidade dos Testes
3.
IEEE Trans Biomed Circuits Syst ; 9(3): 334-44, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25252284

RESUMO

Lipid bilayer membrane (BLM) arrays are required for high throughput analysis, for example drug screening or advanced DNA sequencing. Complex microfluidic devices are being developed but these are restricted in terms of array size and structure or have integrated electronic sensing with limited noise performance. We present a compact and scalable multichannel electrophysiology platform based on a hybrid approach that combines integrated state-of-the-art microelectronics with low-cost disposable fluidics providing a platform for high-quality parallel single ion channel recording. Specifically, we have developed a new integrated circuit amplifier based on a novel noise cancellation scheme that eliminates flicker noise derived from devices under test and amplifiers. The system is demonstrated through the simultaneous recording of ion channel activity from eight bilayer membranes. The platform is scalable and could be extended to much larger array sizes, limited only by electronic data decimation and communication capabilities.


Assuntos
Eletroquímica/instrumentação , Bicamadas Lipídicas/química , Técnicas Analíticas Microfluídicas/instrumentação , Amplificadores Eletrônicos , Redes de Comunicação de Computadores , Eletroquímica/métodos , Desenho de Equipamento , Canais Iônicos , Dispositivos Lab-On-A-Chip/economia
4.
IEEE Trans Biomed Circuits Syst ; 8(2): 278-92, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24875287

RESUMO

Current sensing readout is one of the most frequent techniques used in biosensing due to the charge-transfer phenomena occurring at solid-liquid interfaces. The development of novel nanodevices for biosensing determines new challenges for electronic interface design based on current sensing, especially when compact and efficient arrays need to be organized, such as in recent trends of rapid label-free electronic detection of DNA synthesis. This paper will review the basic noise limitations of current sensing interfaces with particular emphasis on integrated CMOS technology. Starting from the basic theory, the paper presents, investigates and compares charge-sensitive amplifier architectures used in both continuous-time and discrete-time approaches, along with their design trade-offs involving noise floor, sensitivity to stray capacitance and bandwidth. The ultimate goal of this review is providing analog designers with helpful design rules and analytical tools. Also, in order to present a comprehensive overview of the state-of-the-art, the most relevant papers recently appeared in the literature about this topic are discussed and compared.


Assuntos
Técnicas Biossensoriais , Semicondutores , Razão Sinal-Ruído , Retroalimentação , Nanoporos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA