Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
New Phytol ; 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39417446

RESUMO

Caterpillar feeding immediately triggers the release of volatile compounds stored in the leaves of cotton plants. Additionally, after 1 d of herbivory, the leaves release other newly synthesised volatiles. We investigated whether these volatiles affect chemical defences in neighbouring plants and whether such temporal shifts in emissions matter for signalling between plants. Undamaged receiver plants were exposed to volatiles from plants infested with Spodoptera caterpillars. For receiver plants, we measured changes in defence-related traits such as volatile emissions, secondary metabolites, phytohormones, gene expression, and caterpillar feeding preference. Then, we compared the effects of volatiles emitted before and after 24 h of damage on neighbouring plant defences. Genes that were upregulated in receiver plants following exposure to volatiles from damaged plants were the same as those activated directly by herbivory on a plant. Only volatiles emitted after 24 h of damage, including newly produced volatiles, were found to increase phytohormone levels, upregulate defence genes, and enhance resistance to caterpillars. These results indicate that the defence induction by volatiles is a specific response to de novo synthesised volatiles, suggesting that these compounds are honest signals of herbivore attack. These findings point to an adaptive origin of airborne signalling between plants.

2.
Biol Lett ; 20(10): 20240384, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39353566

RESUMO

One assumed function of herbivore-induced plant volatiles (HIPVs) is to attract natural enemies of the inducing herbivores. Field evidence for this is scarce. In addition, the assumption that elicitors in oral secretions that trigger the volatile emissions are essential for the attraction of natural enemies has not yet been demonstrated under field conditions. After observing predatory social wasps removing caterpillars from maize plants, we hypothesized that these wasps use HIPVs to locate their prey. To test this, we conducted an experiment that simultaneously explored the importance of caterpillar oral secretions in the interaction. Spodoptera caterpillars pinned onto mechanically damaged plants treated with oral secretion were more likely to be attacked by wasps compared with caterpillars on plants that were only mechanically wounded. Both of the latter treatments were considerably more attractive than plants only treated with oral secretion or left untreated. Subsequent analyses of headspace volatiles confirmed differences in emitted volatiles that likely account for the differential predation across treatments. These findings highlight the importance of HIPVs in prey localization by social wasps, hitherto underappreciated potential biocontrol agents and provide evidence for the role that elicitors play in inducing attractive odour blends.


Assuntos
Larva , Comportamento Predatório , Spodoptera , Compostos Orgânicos Voláteis , Vespas , Animais , Vespas/fisiologia , Compostos Orgânicos Voláteis/metabolismo , Spodoptera/fisiologia , Larva/fisiologia , Zea mays , Herbivoria
3.
J Chem Ecol ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914799

RESUMO

Plant domestication often alters plant traits, including chemical and physical defenses against herbivores. In squash, domestication leads to reduced levels of cucurbitacins and leaf trichomes, influencing interactions with insects. However, the impact of domestication on inducible defenses in squash remains poorly understood. Here, we investigated the chemical and physical defensive traits of wild and domesticated squash (Cucurbita argyrosperma), and compared their responses to belowground and aboveground infestation by the root-feeding larvae and the leaf-chewing adults of the banded cucumber beetle Diabrotica balteata (Coleoptera: Chrysomelidae). Wild populations contained cucurbitacins in roots and cotyledons but not in leaves, whereas domesticated varieties lacked cucurbitacins in all tissues. Belowground infestation by D. balteata larvae did not increase cucurbitacin levels in the roots but triggered the expression of cucurbitacin biosynthetic genes, irrespective of domestication status, although the response varied among different varieties. Conversely, whereas wild squash had more leaf trichomes than domesticated varieties, the induction of leaf trichomes in response to herbivory was greater in domesticated plants. Leaf herbivory varied among varieties but there was a trend of higher leaf damage on wild squash than domesticated varieties. Overall, squash plants responded to both belowground and aboveground herbivory by activating chemical defense-associated gene expression in roots and upregulating their physical defense in leaves, respectively. While domestication suppressed both chemical and physical defenses, our findings suggest that it may enhance inducible defense mechanisms by increasing trichome induction in response to herbivory.

4.
Planta ; 257(6): 106, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37127808

RESUMO

MAIN CONCLUSION: Cucurbita argyrosperma domestication affected plant defence by downregulating the cucurbitacin synthesis-associated genes. However, tissue-specific suppression of defences made the cultivars less attractive to co-evolved herbivores Diabrotica balteata and Acalymma spp. Plant domestication reduces the levels of defensive compounds, increasing susceptibility to insects. In squash, the reduction of cucurbitacins has independently occurred several times during domestication. The mechanisms underlying these changes and their consequences for insect herbivores remain unknown. We investigated how Cucurbita argyrosperma domestication has affected plant chemical defence and the interactions with two herbivores, the generalist Diabrotica balteata and the specialist Acalymma spp. Cucurbitacin levels and associated genes in roots and cotyledons in three wild and four domesticated varieties were analysed. Domesticated varieties contained virtually no cucurbitacins in roots and very low amounts in cotyledons. Contrastingly, cucurbitacin synthesis-associated genes were highly expressed in the roots of wild populations. Larvae of both insects strongly preferred to feed on the roots of wild squash, negatively affecting the generalist's performance but not that of the specialist. Our findings illustrate that domestication results in tissue-specific suppression of chemical defence, making cultivars less attractive to co-evolved herbivores. In the case of squash, this may be driven by the unique role of cucurbitacins in stimulating feeding in chrysomelid beetles.


Assuntos
Cucurbita , Herbivoria , Animais , Domesticação , Insetos/fisiologia , Plantas , Cucurbitacinas
5.
Oecologia ; 202(2): 313-323, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37278768

RESUMO

Plant-plant interactions via volatile organic compounds (VOCs) have received much attention, but how abiotic stresses affect these interactions is poorly understood. We tested the effect of VOCs exposure from damaged conspecifics on the production of extra-floral nectar (EFN) in wild cotton plants (Gossypium hirsutum), a coastal species in northern Yucatan (Mexico), and whether soil salinization affected these responses. We placed plants in mesh cages, and within each cage assigned plants as emitters or receivers. We exposed emitters to either ambient or augmented soil salinity to simulate a salinity shock, and within each group subjected half of the emitters to no damage or artificial leaf damage with caterpillar regurgitant. Damage increased the emission of sesquiterpenes and aromatic compounds under ambient but not under augmented salinity. Correspondingly, exposure to VOCs from damaged emitters had effect on receiver EFN induction, but this effect was contingent on salinization. Receivers produced more EFN in response to damage after being exposed to VOCs from damaged emitters when the latter were grown under ambient salinity, but not when they were subjected to salinization. These results suggest complex effects of abiotic factors on VOC-mediated plant interactions.


Assuntos
Gossypium , Sesquiterpenos , Néctar de Plantas , Folhas de Planta , Plantas
6.
J Chem Ecol ; 49(5-6): 340-352, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37160550

RESUMO

Cotton has been used as a model plant to study direct and indirect plant defence against herbivorous insects. However, the plant growing conditions could have an important effect on the outcome of such plant defence studies. We examined how common experimental growth conditions influence constitutive and inducible defences in two species of cotton, Gossypium hirsutum and G. herbaceum. We induced plants by applying caterpillar regurgitant to mechanical wounds to compare the induction levels between plants of both species grown in greenhouse or phytotron conditions. For this we measured defence metabolites (gossypol and heliocides) and performance of Spodoptera frugiperda caterpillars on different leaves, the emission of plant volatiles, and their attractiveness to parasitic wasps. Induction increased the levels of defence metabolites, which in turn decreased the performance of S. frugiperda larvae. Constitutive and induced defence levels were the highest in plants grown in the phytotron (compared to greenhouse plants), G. hirsutum and young leaves. Defence induction was more pronounced in plants grown in the phytotron and in young leaves. Also, the differences between growing conditions were more evident for metabolites in the youngest leaves, indicating an interaction with plant ontogeny. The composition of emitted volatiles was different between plants from the two growth conditions, with greenhouse-grown plants showing more variation than phytotron-grown plants. Also, G. hirsutum released higher amounts of volatiles and attracted more parasitic wasps than G. herbaceum. Overall, these results highlight the importance of experimental abiotic factors in plant defence induction and ontogeny of defences. We therefore suggest careful consideration in selecting the appropriate experimental growing conditions for studies on plant defences.


Assuntos
Gossypium , Vespas , Animais , Gossypium/metabolismo , Larva , Spodoptera , Herbivoria
7.
Am J Bot ; 108(10): 2096-2104, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34693514

RESUMO

PREMISE: Plant responses to herbivores and their elicitors include changes in traits associated with phenology, defense, and reproduction. Induced responses by chewing herbivores are known to be hormonally mediated by the jasmonate pathway and can cascade and affect late-season seed predators and pollinators. Moreover, herbivore-induced plant responses can be transmitted to the next generation. Whether herbivore-induced transgenerational effects also apply to phenological traits is less well understood. METHODS: Here, we explored responses of wild lima bean plants (Phaseolus lunatus) to herbivory and jasmonate treatment and possible transgenerational effects of herbivore-induced early flowering. In a controlled field experiment, we exposed lima bean plants to herbivory by leaf beetles or methyl jasmonate sprays (MJ). We then compared plant development, phenology, reproductive fitness and seed traits among these treatments and undamaged, untreated control plants. RESULTS: We found that MJ and leaf herbivory induced similar responses, with treated plants growing less, flowering earlier, and producing fewer seeds than undamaged plants. However, seed size, phenolics and cyanogenic glycosides concentrations did not differ among treatments. Seed germination rates and flowering time of the offspring were similar among maternal treatments. CONCLUSIONS: Overall, the results confirm that responses of lima bean to herbivory by leaf beetles are mediated by jasmonate; however, effects on phenological traits are not transmitted to the next generation. We discuss why transgenerational effects of herbivory might be restricted to traits that directly target herbivores.


Assuntos
Besouros , Phaseolus , Animais , Ciclopentanos , Herbivoria , Oxilipinas , Reprodução
8.
Planta ; 250(4): 1281-1292, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31240396

RESUMO

MAIN CONCLUSION: Cyanogenic glycosides present in the seeds of wild lima bean plants are associated with seedling defense but do not affect seed germination and seedling growth. Wild lima bean plants contain cyanogenic glycosides (CNGs) that are known to defend the plant against leaf herbivores. However, seed feeders appear to be unaffected despite the high levels of CNGs in the seeds. We investigated a possible role of CNGs in seeds as nitrogen storage compounds that influence plant growth, as well as seedling resistance to herbivores. Using seeds from four different wild lima bean natural populations that are known to vary in CNG levels, we tested two non-mutually exclusive hypotheses: (1) seeds with higher levels of CNGs produce seedlings that are more resistant against generalist herbivores and, (2) seeds with higher levels of CNGs germinate faster and produce plants that exhibit better growth. Levels of CNGs in the seeds were negatively correlated with germination rates and not correlated with seedling growth. However, levels of CNGs increased significantly soon after germination and seeds with the highest CNG levels produced seedlings with higher CNG levels in cotyledons. Moreover, the growth rate of the generalist herbivore Spodoptera littoralis was lower in cotyledons with high-CNG levels. We conclude that CNGs in lima bean seeds do not play a role in seed germination and seedling growth, but are associated with seedling defense. Our results provide insight into the potential dual function of plant secondary metabolites as defense compounds and storage molecules for growth and development.


Assuntos
Glicosídeos/metabolismo , Phaseolus/química , Imunidade Vegetal , Spodoptera/fisiologia , Animais , Germinação , Herbivoria , Nitrogênio/metabolismo , Phaseolus/crescimento & desenvolvimento , Phaseolus/imunologia , Phaseolus/parasitologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/imunologia , Folhas de Planta/parasitologia , Metabolismo Secundário , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/imunologia , Plântula/fisiologia , Sementes/química , Sementes/crescimento & desenvolvimento , Sementes/imunologia , Sementes/parasitologia
9.
Am J Bot ; 106(8): 1059-1067, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31322738

RESUMO

PREMISE: The occurrence and amount of herbivory are shaped by bottom-up forces, primarily plant traits (e.g., defenses), and by abiotic factors. Addressing these concurrent effects in a spatial context has been useful in efforts to understand the mechanisms governing variation in plant-herbivore interactions. Still, few studies have evaluated the simultaneous influence of multiple sources of bottom-up variation on spatial variation in herbivory. METHODS: We tested to what extent chemical (phenolics, production of terpenoid glands) and physical (pubescence) defensive plant traits and climatic factors are associated with variation in herbivory by leaf-chewing insects across populations of wild cotton (Gossypium hirsutum). RESULTS: We found substantial population variation in cotton leaf defenses and insect leaf herbivory. Leaf pubescence, but not gossypol gland density or phenolic content, was significantly negatively associated with herbivory by leaf-chewing insects. In addition, there were direct effects of climate on defenses and herbivory, with leaf pubescence increasing toward drier conditions and leaf damage increasing toward wetter and cooler conditions. There was no evidence, however, of indirect effects (via plant defenses) of climate on herbivory. CONCLUSIONS: These results suggest that spatial variation in insect herbivory on wild G. hirsutum is predominantly driven by concurrent and independent influences of population variation in leaf pubescence and climatic factors.


Assuntos
Gossypium , Herbivoria , Animais , Clima , Insetos , Fenótipo , Folhas de Planta
10.
J Chem Ecol ; 45(3): 286-297, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30554361

RESUMO

Highbush blueberry is a crop native to the northeast USA that has been domesticated for about 100 years. This study compared the susceptibility of wild and domesticated/cultivated highbush blueberries to an invasive frugivorous pest, the spotted wing drosophila (Drosophila suzukii). We hypothesized that: 1) cultivated fruits are preferred by D. suzukii for oviposition and better hosts for its offspring than wild fruits; and, 2) wild and cultivated fruits differ in physico-chemical traits. Fruits from wild and cultivated blueberries were collected from June through August of 2015 and 2016 from 10 to 12 sites in New Jersey (USA); with each site having wild and cultivated blueberries growing in close proximity. The preference and performance of D. suzukii on wild and cultivated blueberries were studied in choice and no-choice bioassays. In addition, we compared size, firmness, acidity (pH), total soluble solids (°Brix), and nutrient, phenolic, and anthocyanin content between wild and cultivated berries. In choice and no-choice bioassays, more eggs were oviposited in, and more flies emerged from, cultivated than wild blueberries. Cultivated fruits were 2x bigger, 47% firmer, 14% less acidic, and had lower °Brix, phenolic, and anthocyanin amounts per mass than wild fruits. Levels of potassium and boron were higher in cultivated fruits, while calcium, magnesium, and copper were higher in wild fruits. These results show that domestication and/or agronomic practices have made blueberries more susceptible to D. suzukii, which was associated with several physico-chemical changes in fruits. Our study documents the positive effects of crop domestication/cultivation on an invasive insect pest.


Assuntos
Mirtilos Azuis (Planta)/parasitologia , Drosophila/fisiologia , Espécies Introduzidas , Agricultura , Animais , Herbivoria
11.
Oecologia ; 187(2): 447-457, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29594614

RESUMO

Lima bean plants (Phaseolus lunatus) exhibit compensatory growth responses to herbivory. Among the various factors that have been identified to affect plant compensatory growth are the extent and type of tissue damage, the herbivore's feeding mode and the time of damage. Another factor that can greatly impact plant responses to herbivory, but has been largely ignored in previous studies, is the action of parasitoids. In most cases, parasitoids halt or slow down the development of herbivorous hosts, which, can result in decreased leaf damage, thereby affecting plant responses and ultimately plant fitness. Here, we investigated the effects of two koinobiont parasitoids on the amount of leaf damage inflicted by the Southern armyworm Spodoptera latifascia to wild lima bean, and the consequences of this for plant growth and seed production in the field. We specifically tested the hypothesis that the action of parasitoids will reduce plant damage and that this reduction will alter plant growth responses and seed production. Indeed, we found that in the presence of parasitoids plants suffered less damage than plants with only herbivores. As a consequence, compensatory growth was reduced and more and heavier seeds were produced earlier in the season, compared to plants exposed to only herbivores.


Assuntos
Herbivoria , Phaseolus , Animais , Desenvolvimento Vegetal , Sementes , Spodoptera
12.
Ecology ; 97(5): 1283-97, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27349104

RESUMO

There is an increasing awareness that herbivory by one insect species induces changes in a plant that affect the performance of other herbivore species that feed on the same plant. However, previous studies of interspecies interactions mediated by plant defense responses have rarely taken into account different insect guilds or the third trophic level. Using a combination of field and laboratory experiments, we examined how early-season herbivory in lima bean plants (Phaseolus lunatus) by the leaf-chewing herbivore Cerotoma ruficornis and the bean pod weevil Apion godmani affects the abundance and performance of the seed beetle Zabrotes subfasciatus and that of its parasitoid Stenocorse bruchivora, which occurs on the plants at the end of the growing season. In addition, we determined the consequences of early-season herbivore-induced defenses on plant performance. We hypothesized that early-season induction would affect plant reproduction and, hence, would alter the suitability of seeds for late-season seed-eating beetles, and that this would in turn alter the vulnerability of these seed beetles to parasitoids. We found strong support for these hypotheses. In the field, early-season herbivory negatively affected plant reproduction and seeds of these plants suffered lower levels of infestation by seed-eating beetles, which in turn suffered less parasitism. Laboratory assays with field-collected seeds confirmed that the performance of beetles and parasitoids was lower on seeds from plants that had been subjected to early-season herbivory. Further analyses revealed that seeds produced by control plants were larger, heavier, and had a higher concentration of cyanogenic glycosides and total protein content than seeds from plants subjected to herbivory. Our results provide insight into how direct and indirect interactions between and within different trophic levels affect the dynamics and structure of complex communities.


Assuntos
Besouros/parasitologia , Herbivoria/fisiologia , Himenópteros/fisiologia , Phaseolus/fisiologia , Animais , Besouros/fisiologia , Cadeia Alimentar , Larva/parasitologia , Larva/fisiologia , Reprodução , Estações do Ano
13.
Am J Bot ; 103(10): 1810-1818, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27756730

RESUMO

PREMISE OF STUDY: Although there is increasing recognition of the effects of plant intraspecific diversity on consumers, the mechanisms by which such effects cascade-up to higher trophic levels remain elusive. METHODS: We evaluated the effects of plant (lima bean, Phaseolus lunatus) intraspecific diversity on a suite of insect herbivores (leaf-chewers, aphids, and seed-eating beetles) and their third trophic-level associates (parasitoids and aphid-tending ants). We established plots of three plants, classified as monocultures of one population source or polycultures with mixtures of three of the four population sources (N = 16 plots per level of diversity). Within each plot, plants were individually placed in pots and canopy contact was prevented, therefore eliminating diversity effects on consumers arising from changes in plant traits due to plant physical interactions. KEY RESULTS: Plant diversity reduced damage by leaf-chewers as well as aphid abundance, and the latter effect in turn reduced ant abundance. In contrast, plant diversity increased the abundance of seed-eating beetles, but did not influence their associated parasitoids. There were no effects of diversity on seed traits potentially associated with seed predation, suggesting that differences in early season herbivory between monocultures and polycultures (a likely mechanism of diversity effects on plants since plant interactions were prevented) did not drive concomitant changes in plant traits. CONCLUSIONS: This study emphasizes that effects of plant intraspecific diversity on consumers are contingent upon differences in associate responses within and among higher trophic levels and suggests possible mechanisms by which such effects propagate up this food web.


Assuntos
Biodiversidade , Cadeia Alimentar , Insetos/fisiologia , Insetos/parasitologia , Phaseolus/fisiologia , Animais , Herbivoria , Phaseolus/genética
14.
Annu Rev Entomol ; 60: 35-58, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25341108

RESUMO

Crop domestication is the process of artificially selecting plants to increase their suitability to human requirements: taste, yield, storage, and cultivation practices. There is increasing evidence that crop domestication can profoundly alter interactions among plants, herbivores, and their natural enemies. Overall, little is known about how these interactions are affected by domestication in the geographical ranges where these crops originate, where they are sympatric with the ancestral plant and share the associated arthropod community. In general, domestication consistently has reduced chemical resistance against herbivorous insects, improving herbivore and natural enemy performance on crop plants. More studies are needed to understand how changes in morphology and resistance-related traits arising from domestication may interact with environmental variation to affect species interactions across multiple scales in agroecosystems and natural ecosystems.


Assuntos
Aracnídeos/fisiologia , Cruzamento , Produtos Agrícolas/fisiologia , Cadeia Alimentar , Insetos/fisiologia , Animais , Produtos Agrícolas/genética
15.
Am J Bot ; 102(8): 1300-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26290553

RESUMO

UNLABELLED: • PREMISE OF THE STUDY: Following herbivore attack, plants can either reduce damage by inducing defenses or mitigate herbivory effects through compensatory growth and reproduction. It is increasingly recognized that such induced defenses in plants are herbivore-specific, but less is known about the specificity of compensatory responses. Damage by multiple herbivores may also lead to synergistic effects on induction and plant fitness that differ from those caused by a single herbivore species. Although largely unstudied, the order of arrival and damage by different herbivore species might also play an important role in the impacts of herbivory on plants.• METHODS: We investigated the specificity of defense induction (phenolics) and effects on growth (number of stems and leaves) and reproduction (number of seeds, seed mass, and germination rate) from feeding by two generalist leaf-chewing herbivores (Spodoptera eridania and Diabrotica balteata) on Phaseolus lunatus plants and evaluated whether simultaneous attack by both herbivores and their order of arrival influenced such dynamics.• KEY RESULTS: Herbivory increased levels of leaf phenolics, but such effects were not herbivore-specific. In contrast, herbivory enhanced seed germination in an herbivore-specific manner. For all variables measured, the combined effects of both herbivore species did not differ from their individual effects. Finally, the order of herbivore arrival did not influence defense induction, plant growth, or seed number but did influence seed mass and germination.• CONCLUSIONS: Overall, this study highlights novel aspects of the specificity of plant responses induced by damage from multiple species of herbivores and uniquely associates such effects with plant lifetime fitness.


Assuntos
Besouros/fisiologia , Herbivoria , Mariposas/fisiologia , Phaseolus/fisiologia , Animais , Larva/crescimento & desenvolvimento , Larva/fisiologia , Mariposas/crescimento & desenvolvimento , Phaseolus/crescimento & desenvolvimento , Phaseolus/imunologia , Reprodução , Especificidade da Espécie
16.
J Chem Ecol ; 40(5): 468-75, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24863488

RESUMO

Cyanogenic glycosides (CNGs) act as feeding or oviposition deterrents and are toxic after enzymatic hydrolysis, thus negatively affecting herbivore performance. While most studies on CNGs focus on leaf herbivores, here we examined seeds from natural populations of Phaseolus lunatus in Mexico. The predominant CNGs, linamarin and lotaustralin, were quantified for each population by using ultra-high pressure liquid chromatography-mass spectrometry. We also examined whether there was a correlation between the concentration of CNGs and the performance of the Mexican bean beetle, Zabrotes subfasciatus, on seeds from each population(.) The concentrations of CNGs in the seeds were relatively high compared to the leaves and were significantly variable among populations. Surprisingly, this had little effect on the performance of the bruchid beetles. Zabrotes subfasciatus can tolerate high concentrations of CNGs, most likely because of the limited ß-glucosidase activity in the seeds. Seed herbivory does not appear to liberate hydrogen cyanide due to the low water content in the seed. This study illustrates the importance of quantifying the natural variation and activity of toxic compounds in order to make relevant biological inferences about their role in defense against herbivores.


Assuntos
Besouros/fisiologia , Glicosídeos/metabolismo , Herbivoria , Phaseolus/química , Phaseolus/fisiologia , Animais , Besouros/química , Feminino , Glicosídeos/análise , Masculino , Sementes/química , Sementes/fisiologia
17.
Heliyon ; 10(6): e27815, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38524601

RESUMO

Microorganisms associated with plant roots significantly impact the quality and quantity of plant defences. However, the bottom-up effects of soil microbes on the aboveground multitrophic interactions remain largely under studied. To address this gap, we investigated the chemically-mediated effects of nitrogen-fixing rhizobia on legume-herbivore-parasitoid multitrophic interactions. To address this, we initially examined the cascading effects of the rhizobia bean association on herbivore caterpillars, their parasitoids, and subsequently investigated how rhizobia influence on plant volatiles and extrafloral nectar. Our goal was to understand how these plant-mediated effects can affect parasitoids. Lima bean plants (Phaseoulus lunatus) inoculated with rhizobia exhibited better growth, and the number of root nodules positively correlated with defensive cyanogenic compounds. Despite increase of these chemical defences, Spodoptera latifascia caterpillars preferred to feed and grew faster on rhizobia-inoculated plants. Moreover, the emission of plant volatiles after leaf damage showed distinct patterns between inoculation treatments, with inoculated plants producing more sesquiterpenes and benzyl nitrile than non-inoculated plants. Despite these differences, Euplectrus platyhypenae parasitoid wasps were similarly attracted to rhizobia- or no rhizobia-treated plants. Yet, the oviposition and offspring development of E. platyhypenae was better on caterpillars fed with rhizobia-inoculated plants. We additionally show that rhizobia-inoculated common bean plants (Phaseolus vulgaris) produced more extrafloral nectar, with higher hydrocarbon concentration, than non-inoculated plants. Consequently, parasitoids performed better when fed with extrafloral nectar from rhizobia-inoculated plants. While the overall effects of bean-rhizobia symbiosis on caterpillars were positive, rhizobia also indirectly benefited parasitoids through the caterpillar host, and directly through the improved production of high quality extrafloral nectar. This study underscores the importance of exploring diverse facets and chemical mechanisms that influence the dynamics between herbivores and predators. This knowledge is crucial for gaining a comprehensive understanding of the ecological implications of rhizobia symbiosis on these interactions.

18.
Theor Appl Genet ; 126(3): 647-61, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23117719

RESUMO

In common bean (Phaseolus vulgaris L.), the most abundant seed proteins are the storage protein phaseolin and the family of closely related APA proteins (arcelin, phytohemagglutinin and α-amylase inhibitor). High variation in APA protein composition has been described and the presence of arcelin (Arc) has been associated with bean resistance against two bruchid beetles, the bean weevil (Acanthoscelides obtectus Say) and the Mexican bean weevil (Zabrotes subfasciatus Bohemian). So far, seven Arc variants have been identified, all in wild accessions, however, only those containing Arc-4 were reported to be resistant to both species. Although many efforts have been made, a successful breeding of this genetic trait into cultivated genotypes has not yet been achieved. Here, we describe a newly collected wild accession (named QUES) and demonstrate its resistance to both A. obtectus and Z. subfasciatus. Immunological and proteomic analyses of QUES seed protein composition indicated the presence of new Arc and arcelin-like (ARL) polypeptides of about 30 and 27 kDa, respectively. Sequencing of cDNAs coding for QUES APA proteins confirmed that this accession contains new APA variants, here referred to as Arc-8 and ARL-8. Moreover, bioinformatic analysis showed the two proteins are closely related to APA components present in the G12949 wild bean accession, which contains the Arc-4 variant. The presence of these new APA components, combined with the observations that they are poorly digested and remain very abundant in A. obtectus feces, so-called frass, suggest that the QUES APA locus is involved in the bruchid resistance. Moreover, molecular analysis indicated a lower complexity of the locus compared to that of G12949, suggesting that QUES should be considered a valuable source of resistance for further breeding purposes.


Assuntos
Alelos , Genótipo , Phaseolus/genética , Lectinas de Plantas/genética , Gorgulhos , Animais , Cruzamento , Biologia Computacional , DNA Complementar/genética , DNA Complementar/isolamento & purificação , Eletroforese em Gel de Poliacrilamida , Loci Gênicos , Fito-Hemaglutininas/genética , Fito-Hemaglutininas/metabolismo , Lectinas de Plantas/metabolismo , Proteômica , Análise de Sequência de DNA
19.
Curr Opin Insect Sci ; 57: 101031, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37028646

RESUMO

Domestication-related changes in the chemical traits of crop plants affect parasitoid foraging success, development, and survival. For example, herbivore-induced changes in the production of volatiles by domesticated plants can enhance or reduce parasitoid attraction. While the trade-off between nutrient content and chemical defense in cultivated plants can increase the suitability of hosts for parasitoids, their increased health and size can positively affect their immune response against parasitoids. Overall, plant domestication is expected to significantly affect their relationship with parasitoids due to altered plant morphology, physical characteristics, chemical defenses, and new plant associations. This review highlights the need for research on the effects of plant domestication on host-parasitoid interactions in the interest of better controlling insect pests.


Assuntos
Domesticação , Vespas , Animais , Larva/fisiologia , Interações Hospedeiro-Parasita , Vespas/fisiologia , Herbivoria , Plantas
20.
J Pest Sci (2004) ; 96(3): 1061-1075, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37181825

RESUMO

Cucurbitaceae plants produce cucurbitacins, bitter triterpenoids, to protect themselves against various insects and pathogens. Adult banded cucumber beetles (Diabrotica balteata), a common pest of maize and cucurbits, sequester cucurbitacins, presumably as a defensive mechanism against their natural enemies, which might reduce the efficacy of biological control agents. Whether the larvae also sequester and are protected by cucurbitacins is unclear. We profiled cucurbitacin levels in four varieties of cucumber, Cucumis sativus, and in larvae fed on these varieties. Then, we evaluated larval growth and resistance against common biocontrol organisms including insect predators, entomopathogenic nematodes, fungi and bacteria. We found considerable qualitative and quantitative differences in the cucurbitacin levels of the four cucumber varieties. While two varieties were fully impaired in their production, the other two accumulated high levels of cucurbitacins. We also observed that D. balteata larvae sequester and metabolize cucurbitacins, and although the larvae fed extensively on both belowground and aboveground tissues, the sequestered cucurbitacins were mainly derived from belowground tissues. Cucurbitacins had no detrimental effects on larval performance and, surprisingly, did not provide protection against any of the natural enemies evaluated. Our results show that D. balteata larvae can indeed sequester and transform cucurbitacins, but sequestered cucurbitacins do not impact the biocontrol potential of common natural enemies used in biocontrol. Hence, this plant trait should be conserved in plant breeding programs, as it has been demonstrated in previous studies that it can provide protection against plant pathogens and generalist insects. Supplementary Information: The online version contains supplementary material available at 10.1007/s10340-022-01568-3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA