Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Br J Sports Med ; 51(21): 1533-1538, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28501806

RESUMO

The biological responses to exercise training are complex, as almost all organs and systems are involved in interactions that result in a plethora of adaptations at the genetic, metabolic and neuromuscular levels.To provide the general practitioner and the sports medicine professionals with a basic understanding of the genetic, metabolic and neuromuscular adaptations at a cellular level that occur with aerobic and resistance exercise in subjects with type 2 diabetes.For each of the three domains (genetic, metabolic and neuromuscular), the results of the major systematic reviews and original research published in relevant journals, indexed in PubMed, were selected. Owing to limitations of space, we focused primarily on the role of skeletal muscle, given its pivotal role in mediating adaptations at all levels.Generally, training-induced adaptations in skeletal muscle are seen as changes in contractile proteins, mitochondrial function, metabolic regulation, intracellular signalling, transcriptional responses and neuromuscular modifications. The main adaptation with clinical relevance would include an improved oxidative capacity derived from aerobic training, in addition to neuromuscular remodelling derived from resistance training. Both training modalities improve insulin sensitivity and reduce cardiovascular risk.Taken together, the modifications that occur at the genetic, metabolic and neuromuscular levels, work correlatively to optimise substrate delivery, mitochondrial respiratory capacity and contractile function during exercise.


Assuntos
Adaptação Fisiológica , Diabetes Mellitus Tipo 2/terapia , Exercício Físico , Músculo Esquelético/fisiologia , Doenças Cardiovasculares/prevenção & controle , Diabetes Mellitus Tipo 2/fisiopatologia , Epigênese Genética , Humanos , Resistência à Insulina , Metabolismo , Treinamento Resistido
2.
Ergonomics ; 59(5): 665-70, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26226165

RESUMO

We assessed whether the use of an ergonomic thorax stabilisation pad, during the preacher arm curl exercise, could significantly reduce the excessive shoulder protraction and thoracic kyphosis induced by the standard flat pad built into the existing preacher arm curl equipment. A 3D motion capture system and inclinometers were used to measure shoulder protraction and thoracic kyphosis in 15 subjects performing preacher arm curl with a plate-loaded machine provided with the standard flat pad. The same measures were repeated after replacing the flat pad with a new ergonomic pad, specifically designed to accommodate the thorax profile and improve body posture. Pad replacement significantly (p < 0.001) reduced shoulder protraction (from [Formula: see text] to [Formula: see text]) and thoracic kyphosis (from [Formula: see text] to [Formula: see text]), enabling postural and functional improvements within the entire spine, shoulder girdle and rib cage. The ergonomic pad may potentially allow a more effective training, prevent musculoskeletal discomfort and reduce the risk of injury. Practitioner summary: We have designed an ergonomic thorax stabilisation pad for the preacher arm curl exercise. The new ergonomic pad improves the poor posture conditions induced by the standard flat pad and may potentially allow a more effective training, prevent musculoskeletal discomfort, improve the breathing function and reduce the risk of injury.


Assuntos
Postura , Treinamento Resistido/instrumentação , Vértebras Torácicas , Tórax , Adulto , Fenômenos Biomecânicos , Desenho de Equipamento , Ergonomia , Exercício Físico , Humanos , Masculino , Ombro , Coluna Vertebral , Adulto Jovem
3.
Percept Mot Skills ; 119(1): 146-55, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25153745

RESUMO

This study investigated enjoyment and naturalness of movement perceived during short bouts of exercise with three aerobic machines: treadmill, elliptical crosstrainer, and Vario. The participants were 72 experienced and 60 inexperienced users. Immediately after the exercise with each machine, they filled in a 12-item form of the Physical Activity Enjoyment Scale (PACES) and a Visual Analogue Scales (VAS) about naturalness of movement. Results showed significant within-subjects differences on all scales; exercise with the treadmill and Vario were perceived to be similarly enjoyable and more enjoyable and natural in comparison with the elliptical crosstrainer. Differences in naturalness ratings between experienced and inexperienced users were observed. Exercise was not equally enjoyable when performed with different aerobic machines, and this should be considered by professionals when prescribing aerobic training to enhance motivation and adherence.


Assuntos
Exercício Físico/psicologia , Prazer/fisiologia , Equipamentos Esportivos , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
4.
J Sports Sci ; 29(5): 457-69, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21225486

RESUMO

An analytical biomechanical model was developed to establish the relevant properties of the Smith squat exercise, and the main differences from the free barbell squat. The Smith squat may be largely patterned to modulate the distributions of muscle activities and joint loadings. For a given value of the included knee angle (θ(knee)), bending the trunk forward, moving the feet forward in front of the knees, and displacing the weight distribution towards the forefoot emphasizes hip and lumbosacral torques, while also reducing knee torque and compressive tibiofemoral and patellofemoral forces (and vice versa). The tibiofemoral shear force φ(t) displays more complex trends that strongly depend on θ(knee). Notably, for 180° ≥ θ(knee) ≥ 130°, φ(t) and cruciate ligament strain forces can be suppressed by selecting proper pairs of ankle and hip angles. Loading of the posterior cruciate ligament increases (decreases) in the range 180° ≥ θ(knee) ≥ 150° (θ(knee) ≤ 130°) with knee extension, bending the trunk forward, and moving the feet forward in front of the knees. In the range 150° > θ(knee) > 130°, the behaviour changes depending on the foot weight distribution. The conditions for the development of anterior cruciate ligament strain forces are explained. This work enables careful use of the Smith squat in strengthening and rehabilitation programmes.


Assuntos
Exercício Físico , Articulação do Joelho , Equipamentos Esportivos , Estresse Mecânico , Torque , Levantamento de Peso , Suporte de Carga , Ligamento Cruzado Anterior , Humanos , Joelho , Extremidade Inferior , Modelos Biológicos , Ligamento Cruzado Posterior , Postura
5.
Am J Sports Med ; 42(9): 2103-12, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24918112

RESUMO

BACKGROUND: A number of research studies provide evidence that hamstring cocontraction during open kinetic chain knee extension exercises enhances tibiofemoral (TF) stability and reduces the strain on the anterior cruciate ligament. PURPOSE: To determine the possible increase in hamstring muscle coactivation caused by a voluntary cocontraction effort during open kinetic chain leg-extension exercises, and to assess whether an intentional hamstring cocontraction can completely suppress the anterior TF shear force during these exercises. STUDY DESIGN: Descriptive laboratory study. METHODS: Knee kinematics as well as electromyographic activity in the semitendinosus (ST), semimembranosus (SM), biceps femoris (BF), and quadriceps femoris muscles were measured in 20 healthy men during isotonic leg extension exercises with resistance (R) ranging from 10% to 80% of the 1-repetition maximum (1RM). The same exercises were also performed while the participants attempted to enhance hamstring coactivation through a voluntary cocontraction effort. The data served as input parameters for a model to calculate the shear and compressive TF forces in leg extension exercises for any set of coactivation patterns of the different hamstring muscles. RESULTS: For R≤ 40% 1RM, the peak coactivation levels obtained with intentional cocontraction (l) were significantly higher (P < 10(-3)) than those obtained without intentional cocontraction (l 0). For each hamstring muscle, maximum level l was reached at R = 30% 1RM, corresponding to 9.2%, 10.5%, and 24.5% maximum voluntary isometric contraction (MVIC) for the BF, ST, and SM, respectively, whereas the ratio l/l 0 reached its maximum at R = 20% 1RM and was approximately 2, 3, and 4 for the BF, SM, and ST, respectively. The voluntary enhanced coactivation level l obtained for R≤ 30% 1RM completely suppressed the anterior TF shear force developed by the quadriceps during the exercise. CONCLUSION: In leg extension exercises with resistance R≤ 40% 1RM, coactivation of the BF, SM, and ST can be significantly enhanced (up to 2, 3, and 4 times, respectively) by a voluntary hamstring cocontraction effort. The enhanced coactivation levels obtained for R≤ 30% 1RM can completely suppress the anterior TF shear force developed by the quadriceps during the exercise. CLINICAL RELEVANCE: This laboratory study suggests that leg extension exercise with intentional hamstring cocontraction may have the potential to be a safe and effective quadriceps-strengthening intervention in the early stages of rehabilitation programs for anterior cruciate ligament injury or reconstruction recovery. Further studies, including clinical trials, are needed to investigate the relevance of this therapeutic exercise in clinical practice.


Assuntos
Ligamento Cruzado Anterior/fisiologia , Exercício Físico/fisiologia , Contração Isométrica/fisiologia , Perna (Membro)/fisiologia , Músculo Esquelético/fisiologia , Adulto , Fenômenos Biomecânicos , Eletromiografia , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA