Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37047048

RESUMO

The blockade of metabotropic glutamate receptor type 5 (mGluR5) was previously found to reduce fat accumulation in HEPG2 cells. Here, we evaluated the effects of mGluR5 blockade in a mouse model of steatosis. Male ob/ob mice fed a high-fat diet were treated with MPEP or vehicle. After 7 weeks, liver biopsies were collected, and nuclei were isolated from fresh tissue. Lipid droplet area and collagen deposition were evaluated on tissue slices; total lipids, lipid peroxidation, and ROS were evaluated on tissue homogenates; PPARα, SREBP-1, mTOR, and NF-κB were assayed on isolated nuclei by Western Blot. Target genes of the above-mentioned factors were assayed by RT-PCR. Reduced steatosis and hepatocyte ballooning were observed in the MPEP group with respect to the vehicle group. Concomitantly, increased nuclear PPARα and reduced nuclear SREBP-1 levels were observed in the MPEP group. Similar trends were obtained in target genes of PPARα and SREBP-1, Acox1 and Acc1, respectively. MPEP administration also reduced oxidative stress and NF-κB activation, probably via NF-κB inhibition. Levels of common markers of inflammation (Il-6, Il1ß and Tnf-α) and oxidative stress (Nrf2) were significantly reduced. mTOR, as well as collagen deposition, were unchanged. Concluding, MPEP, a selective mGluR5 negative allosteric modulator, reduces both fat accumulation and oxidative stress in a 7-week murine model of steatosis. Although underlying mechanisms need to be further investigated, this is the first in vivo study showing the beneficial effects of MPEP in a murine model of steatosis.


Assuntos
Fígado Gorduroso , Hepatopatia Gordurosa não Alcoólica , Camundongos , Masculino , Animais , Fígado/patologia , Camundongos Obesos , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , NF-kappa B/farmacologia , PPAR alfa , Modelos Animais de Doenças , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Dieta Hiperlipídica/efeitos adversos , Serina-Treonina Quinases TOR , Hepatopatia Gordurosa não Alcoólica/patologia , Camundongos Endogâmicos C57BL
2.
Lipids Health Dis ; 20(1): 78, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34320998

RESUMO

BACKGROUND: Waiting lists that continue to grow and the lack of organs available for transplantation necessitate the use of marginal livers, such as fatty livers. Since steatotic livers are more susceptible to damage from ischemia and reperfusion, it was investigated whether fatty livers with different lipidomic profiles show a different outcome when subjected to long-term cold storage preservation. METHODS: Eight-week-old male Wistar rats fed for 2 weeks by a methionine-choline-deficient (MCD) diet or control diet were employed in this study. Livers were preserved in a University of Wisconsin (UW) solution at 4 °C for 6, 12 or 24 h and, after washout, reperfused for 2 h with a Krebs-Henseleit buffer at 37 °C. Hepatic enzyme release, bile production, O2-uptake, and portal venous pressure (PVP) were evaluated. The liver fatty acid profile was evaluated by a gas chromatography-mass spectrometry (GC/MS). RESULTS: MCD rats showed higher LDH and AST levels with respect to the control group. When comparing MCD livers preserved for 6, 12 or 24 h, no differences in enzyme release were found during both the washout or the reperfusion period. The same trend occurred for O2-uptake, PVP, and bile flow. A general decrease in SFA and MUFA, except for oleic acid, and a decrease in PUFA, except for arachidonic, eicosadienoic, and docosahexanaeoic acids, were found in MCD rats when compared with control rats. Moreover, the ratio between SFA and the various types of unsaturated fatty acids (UFA) was significantly lower in MCD rats. CONCLUSIONS: Although prolonged cold ischemia negatively affects the graft outcome, our data suggest that the quality of lipid constituents could influence liver injury during cold storage: the lack of an increased hepatic injury in MCD may be justified by low SFA, which likely reduces the deleterious tendency toward lipid crystallization occurring under cold ischemia.


Assuntos
Deficiência de Colina/complicações , Fígado Gorduroso/patologia , Metionina/deficiência , Preservação de Tecido , Animais , Colina/administração & dosagem , Deficiência de Colina/patologia , Dieta , Fígado/patologia , Masculino , Ratos , Ratos Wistar , Preservação de Tecido/métodos
3.
Int J Mol Sci ; 22(5)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668105

RESUMO

We previously demonstrated that the blockade of mGluR5 by 2-methyl-6(phenylethynyl)pyridine (MPEP) reduces both cold and warm ischemia/reperfusion injury. Here we evaluated whether MPEP reduces the hepatic preservation injury in rat livers from cardiac-death-donors (DCDs). Livers from DCD rats were isolated after an in situ warm ischemia (30 min) and preserved for 22 h at 4 °C with UW solution. Next, 10 mg/Kg MPEP or vehicle were administered 30 min before the portal clamping and added to the UW solution (3 µM). LDH released during washout was quantified. Liver samples were collected for iNOS, eNOS, NO, TNF-α, ICAM-1, caspase-3 and caspase-9 protein expression and nuclear factor-erythroid-2-related factor-2 (Nrf2) gene analysis. Lower LDH levels were detected in control grafts versus DCD groups. An increase in eNOS and NO content occurred after MPEP treatment; iNOS and TNF-α content was unchanged. ICAM-1 expression was reduced in the MPEP-treated livers as well as the levels of caspase-3 and caspase-9. Nrf2, oxidative stress-sensitive gene, was recovered to control value by MPEP. These results suggest that MPEP can be used to reclaim DCD livers subjected to an additional period of cold ischemia during hypothermic storage. MPEP protects against apoptosis and increased eNOS, whose overexpression has been previously demonstrated to be protective in hepatic ischemia/reperfusion damage.


Assuntos
Isquemia Fria/efeitos adversos , Morte , Fígado/metabolismo , Preservação de Órgãos/métodos , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Traumatismo por Reperfusão/prevenção & controle , Isquemia Quente/efeitos adversos , Animais , Transplante de Fígado , Masculino , Ratos , Ratos Wistar , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/patologia , Doadores de Tecidos
4.
Int J Mol Sci ; 21(24)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348908

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a continuum of liver abnormalities often starting as simple steatosis and to potentially progress into nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis and hepatocellular carcinoma. Because of its increasing prevalence, NAFLD is becoming a major public health concern, in parallel with a worldwide increase in the recurrence rate of diabetes and metabolic syndrome. It has been estimated that NASH cirrhosis may surpass viral hepatitis C and become the leading indication for liver transplantation in the next decades. The broadening of the knowledge about NASH pathogenesis and progression is of pivotal importance for the discovery of new targeted and more effective therapies; aim of this review is to offer a comprehensive and updated overview on NAFLD and NASH pathogenesis, the most recommended treatments, drugs under development and new drug targets. The most relevant in vitro and in vivo models of NAFLD and NASH will be also reviewed, as well as the main molecular pathways involved in NAFLD and NASH development.


Assuntos
Modelos Animais de Doenças , Fibrose/patologia , Cirrose Hepática/patologia , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/complicações , Animais , Progressão da Doença , Fibrose/etiologia , Fibrose/terapia , Humanos , Cirrose Hepática/etiologia , Cirrose Hepática/terapia
5.
Molecules ; 25(6)2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32183261

RESUMO

Autofluorescence (AF) of crude serum was investigated with reference to the potential of its intrinsic AF biomarkers for the noninvasive diagnosis of liver injury. Spectral parameters of pure compounds representing retinol (vitamin A) and fluorescing free fatty acids were characterized by spectrofluorometry, to assess spectral parameters for the subsequent AF analysis of serum, collected from rats undergoing liver ischemia/reperfusion (I/R). Differences in AF spectral profiles detected between control and I/R were due to the increase in the AF components representing fatty acids in I/R serum samples. No significant changes occurred for retinol levels, consistently with the literature reporting that constant retinol levels are commonly observed in the blood, except for malnutrition or chronic severe liver disease. Conversely, fatty acids, in particular arachidonic and linoleic acid and their derivatives, act as modulating agents in inflammation, representing both a protective and damaging response to stress stimuli. The biometabolic and pathophysiological meaning of serum components and the possibility of their direct detection by AF spectrofluorometry open up interesting perspectives for the development of AF serum analysis, as a direct, cost effective, supportive tool to assess liver injury and related systemic metabolic alterations, for applications in experimental biomedicine and foreseen translation to the clinics.


Assuntos
Isquemia/metabolismo , Hepatopatias/metabolismo , Fígado/metabolismo , Traumatismo por Reperfusão/metabolismo , Soro/metabolismo , Animais , Ácido Araquidônico/metabolismo , Biomarcadores/metabolismo , Modelos Animais de Doenças , Metabolismo Energético/fisiologia , Ácidos Graxos/metabolismo , Fluorescência , Inflamação/metabolismo , Ácido Linoleico/metabolismo , Masculino , Ratos , Ratos Wistar , Espectrometria de Fluorescência/métodos , Vitamina A/metabolismo
6.
Int J Mol Sci ; 19(2)2018 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-29360756

RESUMO

2-Methyl-6-(phenylethynyl)pyridine (MPEP), a negative allosteric modulator of the metabotropic glutamate receptor (mGluR) 5, protects hepatocytes from ischemic injury. In astrocytes and microglia, MPEP depletes ATP. These findings seem to be self-contradictory, since ATP depletion is a fundamental stressor in ischemia. This study attempted to reconstruct the mechanism of MPEP-mediated ATP depletion and the consequences of ATP depletion on protection against ischemic injury. We compared the effects of MPEP and other mGluR5 negative modulators on ATP concentration when measured in rat hepatocytes and acellular solutions. We also evaluated the effects of mGluR5 blockade on viability in rat hepatocytes exposed to hypoxia. Furthermore, we studied the effects of MPEP treatment on mouse livers subjected to cold ischemia and warm ischemia reperfusion. We found that MPEP and 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP) deplete ATP in hepatocytes and acellular solutions, unlike fenobam. This finding suggests that mGluR5s may not be involved, contrary to previous reports. MPEP, as well as MTEP and fenobam, improved hypoxic hepatocyte viability, suggesting that protection against ischemic injury is independent of ATP depletion. Significantly, MPEP protected mouse livers in two different ex vivo models of ischemia reperfusion injury, suggesting its possible protective deployment in the treatment of hepatic inflammatory conditions.


Assuntos
Fígado/irrigação sanguínea , Fígado/metabolismo , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Traumatismo por Reperfusão/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Hipóxia Celular/efeitos dos fármacos , Modelos Animais de Doenças , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Imidazóis/farmacologia , Fígado/efeitos dos fármacos , Fígado/patologia , Camundongos , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Piperidinas/farmacologia , Piridinas/farmacologia , Ratos , Traumatismo por Reperfusão/prevenção & controle , Tiazóis/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
7.
Int J Mol Sci ; 19(9)2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30189659

RESUMO

While it is well established that various factors can impair the production and flow of bile and lead to cholestatic disease in hepatic and extrahepatic sites, an enhanced assessment of the biomarkers of the underlying pathophysiological mechanisms is still needed to improve early diagnosis and therapeutic strategies. Hence, we investigated fluorescing endogenous biomolecules as possible intrinsic biomarkers of molecular and cellular changes in cholestasis. Spectroscopic autofluorescence (AF) analysis was performed using a fiber optic probe (366 nm excitation), under living conditions and in serum, on the livers of male Wistar rats submitted to bile duct ligation (BDL, 24, 48, and 72 h). Biomarkers of liver injury were assayed biochemically. In the serum, AF analysis distinctly detected increased bilirubin at 24 h BDL. A continuous, significant increase in red-fluorescing porphyrin derivatives indicated the subversion of heme metabolism, consistent with an almost twofold increase in the serum iron at 72 h BDL. In the liver, changes in the AF of NAD(P)H and flavins, as well as lipopigments, indicated the impairment of mitochondrial functionality, oxidative stress, and the accumulation of oxidative products. A serum/hepatic AF profile can be thus proposed as a supportive diagnostic tool for the in situ, real-time study of bio-metabolic alterations in bile duct ligation (BDL) in experimental hepatology, with the potential to eventually translate to clinical diagnosis.


Assuntos
Colestase/diagnóstico , Colestase/metabolismo , Fígado/metabolismo , Animais , Bilirrubina/metabolismo , Biomarcadores , Colestase/sangue , Metabolismo Energético , Peroxidação de Lipídeos , Fígado/patologia , Testes de Função Hepática , Masculino , Imagem Óptica , Estresse Oxidativo , Ratos
8.
Hepatol Res ; 47(7): 668-682, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27448628

RESUMO

AIMS: Livers with moderate steatosis are currently recruited as marginal organs to face donor shortage in transplantation, even though lipid excess and oxidative stress increase preservation injury risk. Sensitive, real-time detection of liver metabolism engagement could help donor selection and preservation procedures, ameliorating the graft outcome. Hence, we investigated endogenous biomolecules with autofluorescence (AF) properties as biomarkers supporting the detection of liver oxidative events and the assessment of metabolic responses to external stimuli. METHODS: Livers from male Wistar rats fed a 12-day methionine/choline-deficient (MCD) diet were subjected to AF spectrofluorometric analysis (fiber-optic probe, 366-nm excitation) before and after organ isolation, and following preservation (cold storage or 20°C machine perfusion) and reperfusion. RESULTS: Innovative dynamic AF results on lipid oxidation to lipofuscin-like lipopigments, correlating with biochemical oxidative damage (thiobarbituric acid reactive substances) and antioxidant defense (glutathione) parameters, suggested lipid engagement in MCD livers counteracting reactive oxidizing species. The maintained MCD liver functionality was supported by limited changes in bilirubin AF spectral profile, reflecting bile composition balance, despite their intrinsic mitochondrial weakness, confirmed by adenosine 5'-triphosphate levels, and regardless of different preservation effects on energy metabolism revealed by conventional reduced forms of nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate and flavin AF data. CONCLUSION: Autofluorescence showed that, after a relatively short time on an MCD diet, livers are still able to face oxidizing events and maintain a functional balance. These results strengthen AF as a supportive diagnostic tool in experimental hepatology, to characterize marginal livers in real time, monitor their response to ischemia/reperfusion, and investigate protective therapeutic agents.

9.
Int J Mol Sci ; 19(1)2017 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-29301219

RESUMO

We compared static preservation (cold storage, CS, 4 °C) with dynamic preservation (machine perfusion, MP, 20 °C) followed by reperfusion using marginal livers: a model of donation after cardiac death (DCD) livers and two models of fatty livers, the methionine-choline deficient (MCD) diet model, and obese Zucker (fa/fa) rats. CS injury in DCD livers was reversed by an oxygenated washout (OW): hepatic damage, bile flow, and the ATP/ADP ratio in the OW + CS group was comparable with the ratio obtained with MP. Using fatty livers, CS preservation induced a marked release in hepatic and biliary enzymes in obese Zucker rats when compared with the MCD group. The same trend occurred for bile flow. No difference was found when comparing MP in MCD and obese Zucker rats. Fatty acid analysis demonstrated that the total saturated (SFA)/polyunsaturated fatty acid (PUFA) ratio was, respectively, 1.5 and 0.71 in obese Zucker and MCD rats. While preservation damage in DCD livers is associated with the ATP/ADP recovered with OW, injury in fatty livers is linked to fatty acid constituents: livers from obese. Zucker rats, with greater content in saturated FA, might be more prone to CS injury. On the contrary, MCD livers with elevated PUFA content might be less susceptible to hypothermia.


Assuntos
Fígado/metabolismo , Preservação de Órgãos/métodos , Traumatismo por Reperfusão/prevenção & controle , Obtenção de Tecidos e Órgãos , Animais , Criopreservação , Morte , Ácidos Graxos/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Fígado Gorduroso/metabolismo , Humanos , Transplante de Fígado , Ratos , Ratos Zucker
10.
Mol Cell Biochem ; 419(1-2): 147-55, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27357826

RESUMO

Using an experimental model of NASH induced by a methionine-choline-deficient (MCD) diet, we investigated whether changes occur in serum and tissue levels of asymmetric dimethylarginine (ADMA). Male Wistar rats underwent NASH induced by 8-week feeding with an MCD diet. Serum and hepatic biopsies at 2, 4 and 8 weeks were taken, and serum enzymes, ADMA and nitrate/nitrite (NOx), were evaluated. Hepatic biopsies were used for mRNA and protein expression analysis of dimethylarginine dimethylaminohydrolase-1 (DDAH-1) and protein methyltransferases (PRMT-1), enzymes involved in ADMA metabolism and synthesis, respectively, and ADMA transporters (CAT-1, CAT-2A and CAT-2B). Lipid peroxides (TBARS), glutathione, ATP/ADP and DDAH activity were quantified. An increase in serum AST and ALT was detected in MCD animals. A time-dependent decrease in serum and tissue ADMA and increase in mRNA expression of DDAH-1 and PRMT-1 as well as higher rates of mRNA expression of CAT-1 and lower rates of CAT-2A and CAT-2B were found after 8-week MCD diet. An increase in serum NOx and no changes in protein expression in DDAH-1 and CAT-1 and higher content in CAT-2 and PRMT-1 were found at 8 weeks. Hepatic DDAH activity decreased with a concomitant increase in oxidative stress, as demonstrated by high TBARS levels and low glutathione content. In conclusion, a decrease in serum and tissue ADMA levels in the MCD rats was found associated with a reduction in DDAH activity due to the marked oxidative stress observed. Changes in ADMA levels and its transporters are innovative factors in the onset and progression of hepatic alterations correlated with MCD diet-induced NASH.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/biossíntese , Arginina/análogos & derivados , Colina , Fígado Gorduroso/sangue , Regulação da Expressão Gênica , Metionina/deficiência , Animais , Arginina/sangue , Modelos Animais de Doenças , Masculino , Ratos , Ratos Wistar
11.
Mol Genet Metab Rep ; 39: 101074, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38544910

RESUMO

Each year thousands of babies are born with rare genetic disorders not identified by current NBS panels, due to programs which are not yet optimal. Next-generation sequencing technologies have the potential to overcome many NBS drawbacks and provide large amounts of molecular data, broadening the number of diseases investigated. Here, we design and set up an NGS-based approach to evaluate the feasibility of NGS from dried blood spot starting from 34 DBSs. After assessing gDNA yield and integrity, libraries were performed using three target enrichment approaches, sequenced on NS500 platform, and analyzed on commercial platform. Specifically, we focus on virtual gene panels related to highly actionable neonatal/pediatric disorders. WES show that amount and quality of DBS-extracted gDNA are suitable for high-throughput sequencing. We obtain 500-1500 ng for each specimen, 1.7-1.8 260/280 wavelength, and DIN of 7 resulting DNA integrity, on par with traditional venous blood collection. A high read depth with 94.3% coverage uniformity is achieved for all samples. Data results on mean coverage are comparable among the different workflows tested and demonstrate that DBS from newborn collected at birth is a suitable material for the developing of gNBS programs.

12.
Wiley Interdiscip Rev RNA ; 15(3): e1854, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38831585

RESUMO

Leukodystrophies are a class of rare heterogeneous disorders which affect the white matter of the brain, ultimately leading to a disruption in brain development and a damaging effect on cognitive, motor and social-communicative development. These disorders present a great clinical heterogeneity, along with a phenotypic overlap and this could be partially due to contributions from environmental stimuli. It is in this context that there is a great need to investigate what other factors may contribute to both disease insurgence and phenotypical heterogeneity, and novel evidence are raising the attention toward the study of epigenetics and transcription mechanisms that can influence the disease phenotype beyond genetics. Modulation in the epigenetics machinery including histone modifications, DNA methylation and non-coding RNAs dysregulation, could be crucial players in the development of these disorders, and moreover an aberrant RNA maturation process has been linked to leukodystrophies. Here, we provide an overview of these mechanisms hoping to supply a closer step toward the analysis of leukodystrophies not only as genetically determined but also with an added level of complexity where epigenetic dysregulation is of key relevance. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNA RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.


Assuntos
Epigênese Genética , Humanos , RNA/metabolismo , RNA/genética , Animais
13.
Cells ; 12(8)2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37190014

RESUMO

The prevalence of pediatric obesity is rising rapidly worldwide, and "omic" approaches are helpful in investigating the molecular pathophysiology of obesity. This work aims to identify transcriptional differences in the subcutaneous adipose tissue (scAT) of children with overweight (OW), obesity (OB), or severe obesity (SV) compared with those of normal weight (NW). Periumbilical scAT biopsies were collected from 20 male children aged 1-12 years. The children were stratified into the following four groups according to their BMI z-scores: SV, OB, OW, and NW. scAT RNA-Seq analyses were performed, and a differential expression analysis was conducted using the DESeq2 R package. A pathways analysis was performed to gain biological insights into gene expression. Our data highlight the significant deregulation in both coding and non-coding transcripts in the SV group when compared with the NW, OW, and OB groups. A KEGG pathway analysis showed that coding transcripts were mainly involved in lipid metabolism. A GSEA analysis revealed the upregulation of lipid degradation and metabolism in SV vs. OB and SV vs. OW. Bioenergetic processes and the catabolism of branched-chain amino acids were upregulated in SV compared with OB, OW, and NW. In conclusion, we report for the first time that a significant transcriptional deregulation occurs in the periumbilical scAT of children with severe obesity compared with those of normal weight or those with overweight or mild obesity.


Assuntos
Obesidade Mórbida , Obesidade Infantil , Humanos , Masculino , Criança , Obesidade Infantil/genética , Sobrepeso/genética , Projetos Piloto , Transcriptoma/genética , Gordura Subcutânea
14.
Antioxidants (Basel) ; 12(4)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37107340

RESUMO

Oxygen is a central molecule for numerous metabolic and cytophysiological processes, and, indeed, its imbalance can lead to numerous pathological consequences. In the human body, the brain is an aerobic organ and for this reason, it is very sensitive to oxygen equilibrium. The consequences of oxygen imbalance are especially devastating when occurring in this organ. Indeed, oxygen imbalance can lead to hypoxia, hyperoxia, protein misfolding, mitochondria dysfunction, alterations in heme metabolism and neuroinflammation. Consequently, these dysfunctions can cause numerous neurological alterations, both in the pediatric life and in the adult ages. These disorders share numerous common pathways, most of which are consequent to redox imbalance. In this review, we will focus on the dysfunctions present in neurodegenerative disorders (specifically Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis) and pediatric neurological disorders (X-adrenoleukodystrophies, spinal muscular atrophy, mucopolysaccharidoses and Pelizaeus-Merzbacher Disease), highlighting their underlining dysfunction in redox and identifying potential therapeutic strategies.

15.
Regen Eng Transl Med ; : 1-12, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-37363698

RESUMO

Purpose: Mesenchymal stem cells (MSCs) represent a promising source for stem cell therapies in numerous diseases, including pediatric respiratory system diseases. Characterized by low immunogenicity, high anti-inflammatory, and immunoregulatory features, MSCs demonstrated an excellent therapeutic profile in numerous in vitro and preclinical models. MSCs reside in a specialized physiologic microenvironment, characterized by a unique combination of biophysical, biochemical, and cellular properties. The exploitation of the 3D micro-scaffold Nichoid, which simulates the native niche, enhanced the anti-inflammatory potential of stem cells through mechanical stimulation only, overcoming the limitation of biochemical and xenogenic growth factors application. Materials and Methods: In this work, we expanded pediatric bone marrow MSCs (BM-MSCs) inside the Nichoid and performed a complete cellular characterization with different approaches including viability assays, immunofluorescence analyses, RNA sequencing, and gene expression analysis. Results: We demonstrated that BM-MSCs inside the scaffold remain in a stem cell quiescent state mimicking the condition of the in vivo environment. Moreover, the gene expression profile of these cells shows a significant up-regulation of genes involved in immune response when compared with the flat control. Conclusion: The significant changes in the expression profile of anti-inflammatory genes could potentiate the therapeutic effect of BM-MSCs, encouraging the possible clinical translation for the treatment of pediatric congenital and acquired pulmonary disorders, including post-COVID lung manifestations. Lay Summary: Regenerative medicine is the research field integrating medicine, biology, and biomedical engineering. In this context, stem cells, which are a fundamental cell source able to regenerate tissues and restore damage in the body, are the key component for a regenerative therapeutic approach. When expanded outside the body, stem cells tend to differentiate spontaneously and lose regenerative potential due to external stimuli. For this reason, we exploit the scaffold named Nichoid, which mimics the in vivo cell niche architecture. In this scaffold, mesenchymal stem cells "feel at home" due to the three-dimensional mechanical stimuli, and our findings could be considered as an innovative culture system for the in vitro expansion of stem cells for clinical translation. Future Perspective: The increasing demand of safe and effective cell therapies projects our findings toward the possibility of improving cell therapies based on the use of BM-MSCs, particularly for their clinical translation in lung diseases.

16.
Artigo em Inglês | MEDLINE | ID: mdl-35206356

RESUMO

In Italy, peat extracted from the peat bogs of Lake Massaciuccoli is the only peat used for therapeutic purposes. Massaciuccoli peat (M-peat) soaked in the salty bromine-iodine water of Undulna Thermae has given positive results in various pathological situations, mainly in dermatological, rheumatological, and traumatological conditions. Morphological and biochemical analysis were performed using base M-peat samples matured in the salty bromine-iodine water of the Undulna Thermae for different times, to evaluate whether maturation time modifies peat chemico-physical properties. The maturation process induced particle aggregation, with an increase in the fractions with larger particle size. The presence of a high number of proteins derived from organic degradation was observed; after 6 months of maturation, a significant increase in proteins was found, suggesting that salty bromine-iodine water plays a role in the clinical action of the peat. The presence of lipids in M-peat was also confirmed, allowing us to draw important considerations on its therapeutic properties possibly deriving from the relevant interactions between lipids and humic acids. Finally, from our observations, it could be reasonably argued that longer periods of maturation do not result in additional advantages regarding clinical activity.


Assuntos
Cloreto de Sódio , Solo , Substâncias Húmicas/análise , Água/análise , Áreas Alagadas
17.
Biomedicines ; 10(1)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35052872

RESUMO

Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are some of the biggest public health challenges due to their spread and increasing incidence around the world. NAFLD is characterized by intrahepatic lipid deposition, accompanied by dyslipidemia, hypertension, and insulin resistance, leading to more serious complications. Among the various causes, drug administration for the treatment of numerous kinds of diseases, such as antiarrhythmic and antihypertensive drugs, promotes the onset and progression of steatosis, causing drug-induced hepatic steatosis (DIHS). Here, we reviewed in detail the major classes of drugs that cause DIHS and the specific molecular mechanisms involved in these processes. Eight classes of drugs, among the most used for the treatment of common pathologies, were considered. The most diffused mechanism whereby drugs can induce NAFLD/NASH is interfering with mitochondrial activity, inhibiting fatty acid oxidation, but other pathways involved in lipid homeostasis are also affected. PubMed research was performed to obtain significant papers published up to November 2021. The key words included the class of drugs, or the specific compound, combined with steatosis, nonalcoholic steatohepatitis, fibrosis, fatty liver and hepatic lipid deposition. Additional information was found in the citations listed in other papers, when they were not displayed in the original search.

18.
Pharmaceuticals (Basel) ; 15(5)2022 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-35631351

RESUMO

We have previously demonstrated that the farnesoid X receptor (FXR) agonist obeticholic acid (OCA) protects the liver via downregulation of hepatic matrix metalloproteinases (MMPs) after ischemia/reperfusion (I/R), which can lead to multiorgan dysfunction. The present study investigated the capacity of OCA to modulate MMPs in distant organs such as the kidney. Male Wistar rats were dosed orally with 10 mg/kg/day of OCA (5 days) and were subjected to 60-min partial hepatic ischemia. After 120-min reperfusion, kidney biopsies (cortex and medulla) and blood samples were collected. Serum creatinine, kidney MMP-2, and MMP-9-dimer, tissue inhibitors of MMPs (TIMP-1, TIMP-2), RECK, TNF-alpha, and IL-6 were monitored. MMP-9-dimer activity in the kidney cortex and medulla increased after hepatic I/R and a reduction was detected in OCA-treated I/R rats. Although not significantly, MMP-2 activity decreased in the cortex of OCA-treated I/R rats. TIMPs and RECK levels showed no significant differences among all groups considered. Serum creatinine increased after I/R and a reduction was detected in OCA-treated I/R rats. The same trend occurred for tissue TNF-alpha and IL-6. Although the underlying mechanisms need further investigation, this is the first study showing, in the kidney, beneficial effects of OCA by reducing TNF-alpha-mediated expression of MMPs after liver I/R.

19.
Artigo em Inglês | MEDLINE | ID: mdl-35682490

RESUMO

Childhood obesity is a leading public health problem worldwide, as it is increasingly prevalent and therefore responsible for serious obesity-related comorbidities, not only in childhood but also in adulthood. In addition to cardio-metabolic obesity-related disorders, recent evidence suggests that excess adipose tissue in turn is associated with immune cell infiltration, increased adipokine release, and the development of low-grade systemic inflammation obesity. Exercise is considered a non-pharmacological intervention that can delay obesity-related comorbidities, improving cardiovascular fitness and modulating the inflammatory processes. It has been reported that the anti-inflammatory effect of regular exercise may be mediated by a reduction in visceral fat mass, with a subsequent decrease in the release of adipokines from adipose tissue (AT) and/or by the induction of an anti-inflammatory environment. In this narrative review, we discuss the role of AT as an endocrine organ associated with chronic inflammation and its role in obesity-related complications, focusing on the effect of exercise in reducing inflammation in children and adolescents with obesity. Regular physical exercise must be considered as a natural part of a healthy lifestyle, and promoting physical activity starting from childhood is useful to limit the negative effects of obesity on health. The crucial role of the immune system in the development of obesity-induced inflammatory processes and the efficacy of exercise as an anti-inflammatory, non-pharmacological intervention may provide possible targets for the development of new treatments and early preventive strategies.


Assuntos
Obesidade Infantil , Adipocinas , Tecido Adiposo , Adolescente , Criança , Exercício Físico , Humanos , Inflamação/etiologia , Obesidade Infantil/complicações , Obesidade Infantil/prevenção & controle
20.
Nutrients ; 14(21)2022 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-36364954

RESUMO

Childhood obesity is characterized by an increased risk of several metabolic derangements including insulin resistance (IR). The strongest recommendations to prevent obesity and related complications are a balanced and adequate diet and practicing physical activity from early childhood. In this review, we propose to present the effects of healthy lifestyle strategies, including physical exercise and dietary approaches, on the management of IR and related metabolic derangements. All types of exercise (aerobic, resistance and combined training) effectively reduce IR in pediatric patients with obesity; it seems that aerobic and combined training stimulate greater improvements in IR compared to resistance training. Balanced normocaloric or hypocaloric dietary approaches are also valid strategies to address IR; it is not possible to assess the long-term impact of varying macronutrients on cardiometabolic risk. The glycemic index/load evaluation is a useful dietary approach to glucose metabolism control. Similarly, they should adopt the principle of the Mediterranean diet. Randomized studies with longer monitoring are needed to define the benefits of nutritional supplementation on IR. Considering that healthy style acquisition could track to later ages, programs of healthy lifestyle starting with children offer a better preventive strategy to preserve metabolic control and children's health.


Assuntos
Resistência à Insulina , Obesidade Infantil , Adolescente , Humanos , Criança , Pré-Escolar , Obesidade Infantil/prevenção & controle , Estilo de Vida , Estilo de Vida Saudável , Exercício Físico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA