RESUMO
Spinal muscular atrophy (SMA), which results from the loss of expression of the survival of motor neuron-1 (SMN1) gene, represents the most common genetic cause of pediatric mortality. A duplicate copy (SMN2) is inefficiently spliced, producing a truncated and unstable protein. We describe herein a potent, orally active, small-molecule enhancer of SMN2 splicing that elevates full-length SMN protein and extends survival in a severe SMA mouse model. We demonstrate that the molecular mechanism of action is via stabilization of the transient double-strand RNA structure formed by the SMN2 pre-mRNA and U1 small nuclear ribonucleic protein (snRNP) complex. The binding affinity of U1 snRNP to the 5' splice site is increased in a sequence-selective manner, discrete from constitutive recognition. This new mechanism demonstrates the feasibility of small molecule-mediated, sequence-selective splice modulation and the potential for leveraging this strategy in other splicing diseases.
Assuntos
Processamento Alternativo , Atrofia Muscular Espinal/tratamento farmacológico , RNA de Cadeia Dupla/agonistas , Ribonucleoproteína Nuclear Pequena U1/agonistas , Bibliotecas de Moléculas Pequenas/farmacologia , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo , Animais , Sítios de Ligação , Modelos Animais de Doenças , Feminino , Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Modelos Moleculares , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/mortalidade , Atrofia Muscular Espinal/patologia , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Proteólise , Precursores de RNA/agonistas , Precursores de RNA/química , Precursores de RNA/metabolismo , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/metabolismo , Ribonucleoproteína Nuclear Pequena U1/química , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/metabolismo , Análise de Sobrevida , Proteína 2 de Sobrevivência do Neurônio Motor/química , Proteína 2 de Sobrevivência do Neurônio Motor/genéticaRESUMO
We used the cerebellum as a model to study the morphogenetic and cellular processes underlying the formation of elaborate brain structures from a simple neural tube, using an inducible genetic fate mapping approach in mouse. We demonstrate how a 90 degrees rotation between embryonic days 9 and 12 converts the rostral-caudal axis of dorsal rhombomere 1 into the medial-lateral axis of the wing-like bilateral cerebellar primordium. With the appropriate use of promoters, we marked specific medial-lateral domains of the cerebellar primordium and derived a positional fate map of the murine cerebellum. We show that the adult medial cerebellum is produced by expansion, rather than fusion, of the thin medial primordium. Furthermore, ventricular-derived cells maintain their original medial-lateral coordinates into the adult, whereas rhombic lip-derived granule cells undergo lateral to medial posterior transverse migrations during foliation. Thus, we show that progressive changes in the axes of the cerebellum underlie its genesis.
Assuntos
Diferenciação Celular/genética , Linhagem da Célula/genética , Movimento Celular/genética , Cerebelo/embriologia , Morfogênese/fisiologia , Células-Tronco/metabolismo , Animais , Padronização Corporal/genética , Cerebelo/citologia , Cerebelo/metabolismo , Quimera , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Marcadores Genéticos , Proteínas de Homeodomínio/genética , Integrases/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Neurônios/metabolismo , Regiões Promotoras Genéticas/genética , Células-Tronco/citologiaRESUMO
Huntington's disease is caused by expanded CAG repeats in HTT, conferring toxic gain of function on mutant HTT (mHTT) protein. Reducing mHTT amounts is postulated as a strategy for therapeutic intervention. We conducted genome-wide RNA interference screens for genes modifying mHTT abundance and identified 13 hits. We tested 10 in vivo in a Drosophila melanogaster Huntington's disease model, and 6 exhibited activity consistent with the in vitro screening results. Among these, negative regulator of ubiquitin-like protein 1 (NUB1) overexpression lowered mHTT in neuronal models and rescued mHTT-induced death. NUB1 reduces mHTT amounts by enhancing polyubiquitination and proteasomal degradation of mHTT protein. The process requires CUL3 and the ubiquitin-like protein NEDD8 necessary for CUL3 activation. As a potential approach to modulating NUB1 for treatment, interferon-ß lowered mHTT and rescued neuronal toxicity through induction of NUB1. Thus, we have identified genes modifying endogenous mHTT using high-throughput screening and demonstrate NUB1 as an exemplar entry point for therapeutic intervention of Huntington's disease.
Assuntos
Mutação/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Proteínas Culina/metabolismo , Modelos Animais de Doenças , Drosophila/efeitos dos fármacos , Drosophila/metabolismo , Embrião de Mamíferos , Feminino , Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Proteína Huntingtina , Doença de Huntington/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína NEDD8 , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/toxicidade , Neurônios/efeitos dos fármacos , Gravidez , Fatores de Transcrição/genética , Ubiquitinas/metabolismoRESUMO
Unraveling the therapeutic potential of human embryonic stem cells (hESC) requires tools to modify their genome. We have engineered the PiggyBac transposable element to create an efficient system for gene delivery in hESCs. This redesigned system, named "ePiggyBac," can deliver up to 18 Kb inserts, and transgene expression is observed in almost 90% of hES cells. ePiggyBac transposons can also carry insulators, inducible expression cassettes, and short hairpin RNAs for gain- and loss-of-function approaches. In hES cells, ePiggyBac's efficiency is superior to that of viral vectors and previously described transposons, including other PiggyBac-based systems. In addition, ePiggyBac transgenes can be removed from the hESC genome without leaving any mutation. We used this system to direct hESC differentiation toward a neuronal phenotype. We then removed the transposons to obtain transgene-free neuronal precursors and neurons. The ability to create fully reversible genetic modifications represents an important step toward clinical applications of hESCs.
Assuntos
Diferenciação Celular , Linhagem da Célula , Elementos de DNA Transponíveis/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Técnicas de Transferência de Genes , Animais , Sequência de Bases , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Doxiciclina/farmacologia , Células-Tronco Embrionárias/efeitos dos fármacos , Engenharia Genética , Genoma Humano/genética , Humanos , Macaca , Dados de Sequência Molecular , Mutagênese Insercional/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Especificidade de Órgãos/efeitos dos fármacos , Fenótipo , RNA Interferente Pequeno/metabolismo , TransgenesRESUMO
The genetic pathways that partition the developing nervous system into functional systems are largely unknown. The engrailed (En) homeobox transcription factors are candidate regulators of this process in the dorsal midbrain (tectum) and anterior hindbrain (cerebellum). En1 mutants lack most of the tectum and cerebellum and die at birth, whereas En2 mutants are viable with a smaller cerebellum and foliation defects. Our previous studies indicated that the difference in phenotypes is due to the earlier expression of En1 as compared with En2, rather than differences in protein function, since knock-in mice expressing En2 in place of En1 have a normal brain. Here, we uncovered a wider spectrum of functions for the En genes by generating a series of En mutant mice. First, using a conditional allele we demonstrate that En1 is required for cerebellum development only before embryonic day 9, but plays a sustained role in forming the tectum. Second, by removing the endogenous En2 gene in the background of En1 knock-in alleles, we show that Drosophila en is not sufficient to sustain midbrain and cerebellum development in the absence of En2, whereas En2 is more potent than En1 in cerebellum development. Third, based on a differential sensitivity to the dose of En1/2, our studies reveal a genetic subdivision of the tectum into its two functional systems and the medial cerebellum into four regions that have distinct circuitry and molecular coding. Our study suggests that an ;engrailed code' is integral to partitioning the tectum and cerebellum into functional domains.