Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 49(4): 846-849, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359197

RESUMO

Femtosecond laser electronic excitation tagging (FLEET) velocimetry is an important diagnostic technique for seedless velocimetry measurements particularly in supersonic and hypersonic flows. Typical FLEET measurements feature a single laser line and camera system to achieve one-component velocimetry along a line, although some multiple-spot and multiple-component configurations have been demonstrated. In this work, tomographic imaging is used to track the three-dimensional location of many FLEET spots. A quadscope is used to combine four unique views onto a single high-speed image intensifier and camera. Tomographic reconstructions of the FLEET emission are analyzed for three-component velocimetry from multiple FLEET spots. Glass wedges are used to create many (nine) closely spaced FLEET spots with less than 10% transmission losses. These developments lead to a significant improvement in the dimensionality and spatial coverage of a FLEET instrument with some increases in experimental complexity and data processing. Multiple-point three-component FLEET velocimetry is demonstrated in an underexpanded jet.

2.
Opt Lett ; 47(1): 98-101, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34951894

RESUMO

Femtosecond laser electronic excitation tagging (FLEET) is a powerful unseeded velocimetry technique typically used to measure one component of velocity along a line, or two or three components from a dot. In this Letter, we demonstrate a dotted-line FLEET technique which combines the dense profile capability of a line with the ability to perform two-component velocimetry with a single camera on a dot. Our set-up uses a single beam path to create multiple simultaneous spots, more than previously achieved in other FLEET spot configurations. We perform dotted-line FLEET measurements downstream of a highly turbulent, supersonic nitrogen free jet. Dotted-line FLEET is created by focusing light transmitted by a periodic mask with rectangular slits of 1.6 × 40 mm2 and an edge-to-edge spacing of 0.5 mm, then focusing the imaged light at the measurement region. Up to seven symmetric dots spaced approximately 0.9 mm apart, with mean full-width at half maximum diameters between 150 and 350 µm, are simultaneously imaged. Both streamwise and radial velocities are computed and presented in this Letter.

3.
Opt Lett ; 45(14): 3949-3952, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32667325

RESUMO

A simple linear configuration for multi-line femtosecond laser electronic excitation tagging (FLEET) velocimetry is used for the first time, to the best of our knowledge, to image an overexpanded unsteady supersonic jet. The FLEET lines are spaced 0.5-1.0 mm apart, and up to six lines can be used simultaneously to visualize the flowfield. These lines are created using periodic masks, despite the mask blocking 25%-30% of the 10 mJ incident beam. Maps of mean single-component velocity in the direction along the principal flow axis, and turbulence intensity in that same direction, are created using multi-line FLEET, and computed velocities agree well with those obtained from single-line (traditional) FLEET. Compared to traditional FLEET, multi-line FLEET offers increased simultaneous spatial coverage and the ability to produce spatial correlations in the streamwise direction. This FLEET permutation is especially well suited for short-duration test facilities.

4.
Appl Opt ; 44(9): 1548-58, 2005 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-15813256

RESUMO

Joint fuel Raman and filtered Rayleigh-scattering (FRS) imaging is demonstrated in a laminar methane-air diffusion flame. These experiments are, to our knowledge, the first reported extension of the FRS technique to nonpremixed combustion. This joint imaging approach allows for correction of the FRS images for the large variations in Rayleigh cross section that occur in diffusion flames and for a secondary measurement of fuel mole fraction. The temperature-dependent filtered Rayleigh cross sections are computed with a six-moment kinetic model for calculation of major-species Rayleigh-Brillouin line shapes and a flamelet-based model for physically judicious estimates of gas-phase chemical composition. Shot-averaged temperatures, fuel mole fractions, and fuel number densities from steady and vortex-strained diffusion flames stabilized on a Wolfhard-Parker slot burner are presented, and a detailed uncertainty analysis reveals that the FRS-measured temperatures are accurate to within +/- 4.5 to 6% of the local absolute temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA