Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 612(7939): 223-227, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36477128

RESUMO

Gamma-ray bursts (GRBs) are divided into two populations1,2; long GRBs that derive from the core collapse of massive stars (for example, ref. 3) and short GRBs that form in the merger of two compact objects4,5. Although it is common to divide the two populations at a gamma-ray duration of 2 s, classification based on duration does not always map to the progenitor. Notably, GRBs with short (≲2 s) spikes of prompt gamma-ray emission followed by prolonged, spectrally softer extended emission (EE-SGRBs) have been suggested to arise from compact object mergers6-8. Compact object mergers are of great astrophysical importance as the only confirmed site of rapid neutron capture (r-process) nucleosynthesis, observed in the form of so-called kilonovae9-14. Here we report the discovery of a possible kilonova associated with the nearby (350 Mpc), minute-duration GRB 211211A. The kilonova implies that the progenitor is a compact object merger, suggesting that GRBs with long, complex light curves can be spawned from merger events. The kilonova of GRB 211211A has a similar luminosity, duration and colour to that which accompanied the gravitational wave (GW)-detected binary neutron star (BNS) merger GW170817 (ref. 4). Further searches for GW signals coincident with long GRBs are a promising route for future multi-messenger astronomy.


Assuntos
Nanismo , Osteocondrodisplasias , Astros Celestes , Humanos , Astronomia , Gravitação
2.
Phys Rev Lett ; 121(9): 091102, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30230872

RESUMO

We use gravitational-wave observations of the binary neutron star merger GW170817 to explore the tidal deformabilities and radii of neutron stars. We perform a Bayesian parameter estimation with the source location and distance informed by electromagnetic observations. We also assume that the two stars have the same equation of state; we demonstrate that, for stars with masses comparable to the component masses of GW170817, this is effectively implemented by assuming that the stars' dimensionless tidal deformabilities are determined by the binary's mass ratio q by Λ_{1}/Λ_{2}=q^{6}. We investigate different choices of prior on the component masses of the neutron stars. We find that the tidal deformability and 90% credible interval is Λ[over ˜]=222_{-138}^{+420} for a uniform component mass prior, Λ[over ˜]=245_{-151}^{+453} for a component mass prior informed by radio observations of Galactic double neutron stars, and Λ[over ˜]=233_{-144}^{+448} for a component mass prior informed by radio pulsars. We find a robust measurement of the common areal radius of the neutron stars across all mass priors of 8.9≤R[over ^]≤13.2 km, with a mean value of ⟨R[over ^]⟩=10.8 km. Our results are the first measurement of tidal deformability with a physical constraint on the star's equation of state and place the first lower bounds on the deformability and areal radii of neutron stars using gravitational waves.

3.
Phys Rev Lett ; 121(25): 259902, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30608779

RESUMO

This corrects the article DOI: 10.1103/PhysRevLett.121.091102.

4.
Nat Astron ; 8(6): 774-785, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38912294

RESUMO

Identifying the sites of r-process nucleosynthesis, a primary mechanism of heavy element production, is a key goal of astrophysics. The discovery of the brightest gamma-ray burst (GRB) to date, GRB 221009A, presented an opportunity to spectroscopically test the idea that r-process elements are produced following the collapse of rapidly rotating massive stars. Here we present James Webb Space Telescope observations of GRB 221009A obtained +168 and +170 rest-frame days after the gamma-ray trigger, and demonstrate that they are well described by a SN 1998bw-like supernova (SN) and power-law afterglow, with no evidence for a component from r-process emission. The SN, with a nickel mass of approximately 0.09 M ⊙, is only slightly fainter than the brightness of SN 1998bw at this phase, which indicates that the SN is not an unusual GRB-SN. This demonstrates that the GRB and SN mechanisms are decoupled and that highly energetic GRBs are not likely to produce significant quantities of r-process material, which leaves open the question of whether explosions of massive stars are key sources of r-process elements. Moreover, the host galaxy of GRB 221009A has a very low metallicity of approximately 0.12 Z ⊙ and strong H2 emission at the explosion site, which is consistent with recent star formation, hinting that environmental factors are responsible for its extreme energetics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA