Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(15): e2106743119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35389750

RESUMO

Human culture, biology, and health were shaped dramatically by the onset of agriculture ∼12,000 y B.P. This shift is hypothesized to have resulted in increased individual fitness and population growth as evidenced by archaeological and population genomic data alongside a decline in physiological health as inferred from skeletal remains. Here, we consider osteological and ancient DNA data from the same prehistoric individuals to study human stature variation as a proxy for health across a transition to agriculture. Specifically, we compared "predicted" genetic contributions to height from paleogenomic data and "achieved" adult osteological height estimated from long bone measurements for 167 individuals across Europe spanning the Upper Paleolithic to Iron Age (∼38,000 to 2,400 B.P.). We found that individuals from the Neolithic were shorter than expected (given their individual polygenic height scores) by an average of −3.82 cm relative to individuals from the Upper Paleolithic and Mesolithic (P = 0.040) and −2.21 cm shorter relative to post-Neolithic individuals (P = 0.068), with osteological vs. expected stature steadily increasing across the Copper (+1.95 cm relative to the Neolithic), Bronze (+2.70 cm), and Iron (+3.27 cm) Ages. These results were attenuated when we additionally accounted for genome-wide genetic ancestry variation: for example, with Neolithic individuals −2.82 cm shorter than expected on average relative to pre-Neolithic individuals (P = 0.120). We also incorporated observations of paleopathological indicators of nonspecific stress that can persist from childhood to adulthood in skeletal remains into our model. Overall, our work highlights the potential of integrating disparate datasets to explore proxies of health in prehistory.


Assuntos
Agricultura , Estatura , Fazendeiros , Saúde , Esqueleto , Adulto , Agricultura/história , Estatura/genética , Criança , DNA Antigo , Europa (Continente) , Fazendeiros/história , Variação Genética , Genômica , Saúde/história , História Antiga , Humanos , Paleopatologia , Esqueleto/anatomia & histologia
2.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34162703

RESUMO

No endemic Madagascar animal with body mass >10 kg survived a relatively recent wave of extinction on the island. From morphological and isotopic analyses of skeletal "subfossil" remains we can reconstruct some of the biology and behavioral ecology of giant lemurs (primates; up to ∼160 kg) and other extraordinary Malagasy megafauna that survived into the past millennium. Yet, much about the evolutionary biology of these now-extinct species remains unknown, along with persistent phylogenetic uncertainty in some cases. Thankfully, despite the challenges of DNA preservation in tropical and subtropical environments, technical advances have enabled the recovery of ancient DNA from some Malagasy subfossil specimens. Here, we present a nuclear genome sequence (∼2× coverage) for one of the largest extinct lemurs, the koala lemur Megaladapis edwardsi (∼85 kg). To support the testing of key phylogenetic and evolutionary hypotheses, we also generated high-coverage nuclear genomes for two extant lemurs, Eulemur rufifrons and Lepilemur mustelinus, and we aligned these sequences with previously published genomes for three other extant lemurs and 47 nonlemur vertebrates. Our phylogenetic results confirm that Megaladapis is most closely related to the extant Lemuridae (typified in our analysis by E. rufifrons) to the exclusion of L. mustelinus, which contradicts morphology-based phylogenies. Our evolutionary analyses identified significant convergent evolution between M. edwardsi and an extant folivore (a colobine monkey) and an herbivore (horse) in genes encoding proteins that function in plant toxin biodegradation and nutrient absorption. These results suggest that koala lemurs were highly adapted to a leaf-based diet, which may also explain their convergent craniodental morphology with the small-bodied folivore Lepilemur.


Assuntos
Núcleo Celular/genética , Extinção Biológica , Genoma , Lemur/genética , Filogenia , Aminoácidos/genética , Animais , Sequência de Bases , Evolução Molecular , Genômica , Herbivoria/fisiologia
3.
Mol Ecol ; 30(8): 1907-1920, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33624366

RESUMO

Hybridization in nature offers unique insights into the process of natural selection in incipient species and their hybrids. In order to evaluate the patterns and targets of selection, we examine a recently discovered baboon hybrid zone in the Kafue River Valley of Zambia, where Kinda baboons (Papio kindae) and grey-footed chacma baboons (P. ursinus griseipes) coexist with hybridization. We genotyped baboons at 14,962 variable genome-wide autosomal markers using double-digest RADseq. We compared ancestry patterns from this genome-wide data set to previously reported ancestry from mitochondrial-DNA and Y-chromosome sources. We also fit a Bayesian genomic cline model to scan for genes with extreme patterns of introgression. We show that the Kinda baboon Y chromosome has penetrated the species boundary to a greater extent than either mitochondrial DNA or the autosomal chromosomes. We also find evidence for overall restricted introgression in the JAK/STAT signalling pathway. Echoing results in other species including humans, we find evidence for enhanced and/or directional introgression of immune-related genes or pathways including the toll-like receptor pathway, the blood coagulation pathway, and the LY96 gene. Finally we show enhanced introgression and excess chacma baboon ancestry in the sperm tail gene ODF2. Together, our results elucidate the dynamics of introgressive hybridization in a primate system while identifying genes and pathways possibly under selection.


Assuntos
DNA Mitocondrial , Hibridização Genética , Animais , Teorema de Bayes , DNA Mitocondrial/genética , Papio/genética , Zâmbia
4.
Proc Natl Acad Sci U S A ; 115(48): E11256-E11263, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30413626

RESUMO

Different human populations facing similar environmental challenges have sometimes evolved convergent biological adaptations, for example, hypoxia resistance at high altitudes and depigmented skin in northern latitudes on separate continents. The "pygmy" phenotype (small adult body size), characteristic of hunter-gatherer populations inhabiting both African and Asian tropical rainforests, is often highlighted as another case of convergent adaptation in humans. However, the degree to which phenotypic convergence in this polygenic trait is due to convergent versus population-specific genetic changes is unknown. To address this question, we analyzed high-coverage sequence data from the protein-coding portion of the genomes of two pairs of populations: Batwa rainforest hunter-gatherers and neighboring Bakiga agriculturalists from Uganda and Andamanese rainforest hunter-gatherers and Brahmin agriculturalists from India. We observed signatures of convergent positive selection between the rainforest hunter-gatherers across the set of genes with "growth factor binding" functions ([Formula: see text]). Unexpectedly, for the rainforest groups, we also observed convergent and population-specific signatures of positive selection in pathways related to cardiac development (e.g., "cardiac muscle tissue development"; [Formula: see text]). We hypothesize that the growth hormone subresponsiveness likely underlying the adult small body-size phenotype may have led to compensatory changes in cardiac pathways, in which this hormone also plays an essential role. Importantly, in the agriculturalist populations, we did not observe similar patterns of positive selection on sets of genes associated with growth or cardiac development, indicating our results most likely reflect a history of convergent adaptation to the similar ecology of rainforests rather than a more general evolutionary pattern.


Assuntos
Adaptação Fisiológica , Povo Asiático/genética , População Negra/genética , Coração/crescimento & desenvolvimento , Herança Multifatorial , Aclimatação , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Genética Populacional , Hormônio do Crescimento/genética , Hormônio do Crescimento/metabolismo , Coração/fisiologia , Humanos , Fenótipo , Floresta Úmida , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Proc Natl Acad Sci U S A ; 113(22): 6178-81, 2016 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-27140612

RESUMO

In the endeavor to associate genetic variation with complex traits, closely related taxa are particularly fruitful for understanding the neurophysiological and genetic underpinnings of species-specific attributes. Similarity to humans has motivated research into nonhuman primate models, yet few studies of wild primates have investigated immediate causal factors of evolutionarily diverged social behaviors. Neurotransmitter differences have been invoked to explain the distinct behavioral suites of two baboon species in Awash, Ethiopia, which differ markedly in social behavior despite evolutionary propinquity. With this natural experiment, we test the hypothesis that genomic regions associated with monoamine neurotransmitters would be highly differentiated, and we identify a dopamine pathway as an outlier, highlighting the system as a potential cause of species-specific social behaviors. Dopamine levels and resultant variation in impulsivity were likely under differential selection in the species due to social system structure differences, with either brash or circumspect social behavior advantageous to secure mating opportunities depending on the social backdrop. Such comparative studies into the causes of the behavioral agendas that create and interact with social systems are of particular interest, and differences in temperament related to boldness and associated with dopamine variation likely played important roles in the evolution of all social, behaviorally complex animals, including baboons and humans.


Assuntos
Comportamento Animal/fisiologia , Biomarcadores/metabolismo , Dopamina/metabolismo , Variação Genética/genética , Papio/genética , Comportamento Social , Animais , Evolução Biológica , Etiópia , Humanos , Metagenômica , Papio/classificação , Fenótipo , Especificidade da Espécie
6.
Malar J ; 17(1): 285, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30081911

RESUMO

BACKGROUND: Malaria is the leading cause of global paediatric mortality in children below 5 years of age. The number of fatalities has reduced significantly due to an expansion of control interventions but the development of new technologies remains necessary in order to achieve elimination. Recent attention has been focused on the release of genetically modified (GM) mosquitoes into natural vector populations as a mechanism of interrupting parasite transmission but despite successful in vivo laboratory studies, a detailed population genetic assessment, which must first precede any proposed field trial, has yet to be undertaken systematically. Here, the genetic structure of Anopheles gambiae populations in north-western Lake Victoria is explored to assess their suitability as candidates for a pilot field study release of GM mosquitoes. METHODS: 478 Anopheles gambiae mosquitoes were collected from six locations and a subset (N = 96) was selected for restriction site-associated DNA sequencing (RADseq). The resulting single nucleotide polymorphism (SNP) marker set was analysed for effective size (Ne), connectivity and population structure (PCA, FST). RESULTS: 5175 high-quality genome-wide SNPs were identified. A principal components analysis (PCA) of the collinear genomic regions illustrated that individuals clustered in concordance with geographic origin with some overlap between sites. Genetic differentiation between populations was varied with inter-island comparisons having the highest values (median FST 0.0480-0.0846). Ne estimates were generally small (124.2-1920.3). CONCLUSIONS: A reduced-representation SNP marker set for genome-wide An. gambiae genetic analysis in the north-western Lake Victoria basin is reported. Island populations demonstrated low to moderate genetic differentiation and greater structure suggesting some limitation to migration. Smaller estimates of Ne indicate that an introduced effector transgene will be more susceptible to genetic drift but to ensure that it is driven to fixation a robust gene drive mechanism will likely be needed. These findings, together with their favourable location and suitability for frequent monitoring, indicate that the Ssese Islands contain several candidate field locations, which merit further evaluation as potential GM mosquito pilot release sites.


Assuntos
Anopheles/genética , Genoma de Inseto , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Animais , Marcadores Genéticos , Densidade Demográfica , Análise de Sequência de DNA , Uganda
7.
J Hum Evol ; 79: 35-44, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25532801

RESUMO

Natural history collections have long been used by morphologists, anatomists, and taxonomists to probe the evolutionary process and describe biological diversity. These biological archives also offer great opportunities for genetic research in taxonomy, conservation, systematics, and population biology. They allow assays of past populations, including those of extinct species, giving context to present patterns of genetic variation and direct measures of evolutionary processes. Despite this potential, museum specimens are difficult to work with because natural postmortem processes and preservation methods fragment and damage DNA. These problems have restricted geneticists' ability to use natural history collections primarily by limiting how much of the genome can be surveyed. Recent advances in DNA sequencing technology, however, have radically changed this, making truly genomic studies from museum specimens possible. We review the opportunities and drawbacks of the use of museum specimens, and suggest how to best execute projects when incorporating such samples. Several high-throughput (HT) sequencing methodologies, including whole genome shotgun sequencing, sequence capture, and restriction digests (demonstrated here), can be used with archived biomaterials.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Metagenômica/métodos , Paleontologia/métodos , Análise de Sequência de DNA/métodos , Animais , DNA/análise , DNA/genética , Fósseis , Museus
8.
Bioinformatics ; 29(21): 2806-7, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23958730

RESUMO

SUMMARY: HippDB catalogs every protein-protein interaction whose structure is available in the Protein Data Bank and which exhibits one or more helices at the interface. The Web site accepts queries on variables such as helix length and sequence, and it provides computational alanine scanning and change in solvent-accessible surface area values for every interfacial residue. HippDB is intended to serve as a starting point for structure-based small molecule and peptidomimetic drug development. AVAILABILITY AND IMPLEMENTATION: HippDB is freely available on the web at http://www.nyu.edu/projects/arora/hippdb. The Web site is implemented in PHP, MySQL and Apache. Source code freely available for download at http://code.google.com/p/helidb, implemented in Perl and supported on Linux. CONTACT: arora@nyu.edu.


Assuntos
Bases de Dados de Proteínas , Complexos Multiproteicos/química , Mapeamento de Interação de Proteínas/métodos , Descoberta de Drogas , Internet , Estrutura Secundária de Proteína , Software
9.
G3 (Bethesda) ; 13(1)2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36377778

RESUMO

Anopheles mosquitoes are the principal vectors for malaria and lymphatic filariasis, and evidence for arboviral transmission under laboratory and natural contexts has been demonstrated. Vector management approaches require an understanding of the ecological, epidemiological, and biological contexts of the species in question, and increased interest in gene drive systems for vector control applications has resulted in an increased need for genome assemblies from understudied mosquito vector species. In this study, we present novel genome assemblies for Anopheles crucians, Anopheles freeborni, Anopheles albimanus, and Anopheles quadrimaculatus and examine the evolutionary relationship between these species. We identified 790 shared single-copy orthologs between the newly sequenced genomes and created a phylogeny using 673 of the orthologs, identifying 289 orthologs with evidence for positive selection on at least 1 branch of the phylogeny. Gene ontology terms such as calcium ion signaling, histone binding, and protein acetylation identified as being biased in the set of selected genes. These novel genome sequences will be useful in developing our understanding of the diverse biological traits that drive vectorial capacity in anophelines.


Assuntos
Anopheles , Malária , Animais , Anopheles/genética , Genoma , Evolução Biológica , América do Norte
10.
bioRxiv ; 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37205419

RESUMO

Baboons (genus Papio ) are a morphologically and behaviorally diverse clade of catarrhine monkeys that have experienced hybridization between phenotypically and genetically distinct phylogenetic species. We used high coverage whole genome sequences from 225 wild baboons representing 19 geographic localities to investigate population genomics and inter-species gene flow. Our analyses provide an expanded picture of evolutionary reticulation among species and reveal novel patterns of population structure within and among species, including differential admixture among conspecific populations. We describe the first example of a baboon population with a genetic composition that is derived from three distinct lineages. The results reveal processes, both ancient and recent, that produced the observed mismatch between phylogenetic relationships based on matrilineal, patrilineal, and biparental inheritance. We also identified several candidate genes that may contribute to species-specific phenotypes. One-Sentence Summary: Genomic data for 225 baboons reveal novel sites of inter-species gene flow and local effects due to differences in admixture.

11.
Science ; 380(6648): eabn8153, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37262153

RESUMO

Baboons (genus Papio) are a morphologically and behaviorally diverse clade of catarrhine monkeys that have experienced hybridization between phenotypically and genetically distinct phylogenetic species. We used high-coverage whole-genome sequences from 225 wild baboons representing 19 geographic localities to investigate population genomics and interspecies gene flow. Our analyses provide an expanded picture of evolutionary reticulation among species and reveal patterns of population structure within and among species, including differential admixture among conspecific populations. We describe the first example of a baboon population with a genetic composition that is derived from three distinct lineages. The results reveal processes, both ancient and recent, that produced the observed mismatch between phylogenetic relationships based on matrilineal, patrilineal, and biparental inheritance. We also identified several candidate genes that may contribute to species-specific phenotypes.


Assuntos
Evolução Biológica , Fluxo Gênico , Papio , Animais , Masculino , Papio/anatomia & histologia , Papio/genética , Fenótipo , Filogenia , Especificidade da Espécie , Caracteres Sexuais
12.
Bioinformatics ; 27(20): 2924-5, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21880703

RESUMO

SUMMARY: AluHunter is a database of taxon-specific primate Alu elements for use in phylogeny and population genetics. The software automatically isolates potentially polymorphic Alu insertions in sequences submitted to GenBank by screening the elements against reference genomes. The resultant database of variable markers is a valuable resource for researchers interested in characterizing Alu elements in their primate taxon of interest. AVAILABILITY AND IMPLEMENTATION: The AluHunter database can be accessed at http://www.aluhunter.com. CONTACT: cmb433@nyu.edu.


Assuntos
Elementos Alu , Bases de Dados de Ácidos Nucleicos , Filogenia , Primatas/classificação , Primatas/genética , Animais , Genética Populacional/métodos , Genômica , Polimorfismo Genético
13.
Am J Primatol ; 74(7): 622-31, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22553123

RESUMO

Descriptions of primate diets are generally based on either direct observation of foraging behavior, morphological classification of food remains from feces, or analysis of the stomach contents of deceased individuals. Some diet items (e.g. insect prey), however, are difficult to identify visually, and observation conditions often do not permit adequate quantitative sampling of feeding behavior. Moreover, the taxonomically informative morphology of some food species (e.g. swallowed seeds, insect exoskeletons) may be destroyed by the digestive process. Because of these limitations, we used a metagenomic approach to conduct a preliminary, "proof of concept" study of interspecific variation in the insect component of the diets of six sympatric New World monkeys known, based on observational field studies, to differ markedly in their feeding ecology. We used generalized arthropod polymerase chain reaction (PCR) primers and cloning to sequence mitochondrial DNA (mtDNA) sequences of the arthropod cytochrome b (CYT B) gene from fecal samples of wild woolly, titi, saki, capuchin, squirrel, and spider monkeys collected from a single sampling site in western Amazonia where these genera occur sympatrically. We then assigned preliminary taxonomic identifications to the sequences by basic local alignment search tool (BLAST) comparison to arthropod CYT B sequences present in GenBank. This study is the first to use molecular techniques to identify insect prey in primate diets. The results suggest that a metagenomic approach may prove valuable in augmenting and corroborating observational data and increasing the resolution of primate diet studies, although the lack of comparative reference sequences for many South American insects limits the approach at present. As such reference data become available for more animal and plant taxa, this approach also holds promise for studying additional components of primate diets.


Assuntos
Dieta/veterinária , Insetos , Metagenômica , Platirrinos/fisiologia , Animais , Artrópodes/genética , Citocromos b/genética , DNA Mitocondrial/química , Fezes/química , Comportamento Alimentar , Insetos/genética , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Análise de Sequência de DNA/veterinária , Especificidade da Espécie
14.
Ecol Evol ; 12(10): e9346, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36311412

RESUMO

Although mate choice is expected to favor partners with advantageous genetic properties, the relative importance of genome-wide characteristics, such as overall heterozygosity or kinship, versus specific loci, is unknown. To disentangle genome-wide and locus-specific targets of mate choice, we must first understand congruence in global and local variation within the same individual. This study compares genetic diversity, both absolute and relative to other individuals (i.e., complementarity), assessed across the genome to that found at the major histocompatibility complex (MHC), a hyper-variable gene family integral to immune system function and implicated in mate choice across species. Using DNA from 22 captive olive baboons (Papio anubis), we conducted double digest restriction site-associated DNA sequencing to estimate genome-wide heterozygosity and kinship, and sequenced two class I and two class II MHC loci. We found that genome-wide diversity was not associated with MHC diversity, and that diversity at class I MHC loci was not correlated with diversity at class II loci. Additionally, kinship was a significant predictor of the number of MHC alleles shared between dyads at class II loci. Our results provide further evidence of the strong selective pressures maintaining genetic diversity at the MHC in comparison to other randomly selected sites throughout the genome. Furthermore, our results indicate that class II MHC disassortative mate choice may mediate inbreeding avoidance in this population. Our study suggests that mate choice favoring genome-wide genetic diversity is not always synonymous with mate choice favoring MHC diversity, and highlights the importance of controlling for kinship when investigating MHC-associated mate choice.

15.
PLoS Negl Trop Dis ; 16(6): e0010507, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35763539

RESUMO

Mayaro virus (MAYV) is an arboviral pathogen in the genus Alphavirus that is circulating in South America with potential to spread to naïve regions. MAYV is also one of the few viruses with the ability to be transmitted by mosquitoes in the genus Anopheles, as well as the typical arboviral transmitting mosquitoes in the genus Aedes. Few studies have investigated the infection response of Anopheles mosquitoes. In this study we detail the transcriptomic and small RNA responses of An. stephensi to infection with MAYV via infectious bloodmeal at 2, 7, and 14 days post infection (dpi). 487 unique transcripts were significantly regulated, 78 putative novel miRNAs were identified, and an siRNA response is observed targeting the MAYV genome. Gene ontology analysis of transcripts regulated at each timepoint shows a number of proteases regulated at 2 and 7 dpi, potentially representative of Toll or melanization pathway activation, and repression of pathways related to autophagy and apoptosis at 14 dpi. These findings provide a basic understanding of the infection response of An. stephensi to MAYV and help to identify host factors which might be useful to target to inhibit viral replication in Anopheles mosquitoes.


Assuntos
Infecções por Alphavirus , Alphavirus , Anopheles , Arbovírus , MicroRNAs , Alphavirus/genética , Infecções por Alphavirus/genética , Animais , Anopheles/fisiologia , Arbovírus/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Transcriptoma
16.
Nat Ecol Evol ; 6(5): 630-643, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35332281

RESUMO

Primates have adapted to numerous environments and lifestyles but very few species are native to high elevations. Here we investigated high-altitude adaptations in the gelada (Theropithecus gelada), a monkey endemic to the Ethiopian Plateau. We examined genome-wide variation in conjunction with measurements of haematological and morphological traits. Our new gelada reference genome is highly intact and assembled at chromosome-length levels. Unexpectedly, we identified a chromosomal polymorphism in geladas that could potentially contribute to reproductive barriers between populations. Compared with baboons at low altitude, we found that high-altitude geladas exhibit significantly expanded chest circumferences, potentially allowing for greater lung surface area for increased oxygen diffusion. We identified gelada-specific amino acid substitutions in the alpha-chain subunit of adult haemoglobin but found that gelada haemoglobin does not exhibit markedly altered oxygenation properties compared with lowland primates. We also found that geladas at high altitude do not exhibit elevated blood haemoglobin concentrations, in contrast to the normal acclimatization response to hypoxia in lowland primates. The absence of altitude-related polycythaemia suggests that geladas are able to sustain adequate tissue-oxygen delivery despite environmental hypoxia. Finally, we identified numerous genes and genomic regions exhibiting accelerated rates of evolution, as well as gene families exhibiting expansions in the gelada lineage, potentially reflecting altitude-related selection. Our findings lend insight into putative mechanisms of high-altitude adaptation while suggesting promising avenues for functional hypoxia research.


Assuntos
Theropithecus , Altitude , Animais , Cromossomos , Genômica , Hipóxia , Oxigênio , Theropithecus/fisiologia
17.
Elife ; 102021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34515026

RESUMO

The immune cells of macaques fed a Western-like diet adopt a pro-inflammatory profile.


Assuntos
Dieta Ocidental , Dieta , Animais , Macaca fascicularis
18.
Evol Appl ; 13(2): 417-431, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31993086

RESUMO

Documenting isolation is notoriously difficult for species with vast polymorphic populations. High proportions of shared variation impede estimation of connectivity, even despite leveraging information from many genetic markers. We overcome these impediments by combining classical analysis of neutral variation with assays of the structure of selected variation, demonstrated using populations of the principal African malaria vector Anopheles gambiae. Accurate estimation of mosquito migration is crucial for efforts to combat malaria. Modeling and cage experiments suggest that mosquito gene drive systems will enable malaria eradication, but establishing safety and efficacy requires identification of isolated populations in which to conduct field testing. We assess Lake Victoria islands as candidate sites, finding one island 30 km offshore is as differentiated from mainland samples as populations from across the continent. Collectively, our results suggest sufficient contemporary isolation of these islands to warrant consideration as field-testing locations and illustrate shared adaptive variation as a useful proxy for connectivity in highly polymorphic species.

19.
PLoS One ; 15(6): e0235106, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32574196

RESUMO

The COVID-19 pandemic, caused by the coronavirus SARS-CoV-2, has devastated health infrastructure around the world. Both ACE2 (an entry receptor) and TMPRSS2 (used by the virus for spike protein priming) are key proteins to SARS-CoV-2 cell entry, enabling progression to COVID-19 in humans. Comparative genomic research into critical ACE2 binding sites, associated with the spike receptor binding domain, has suggested that African and Asian primates may also be susceptible to disease from SARS-CoV-2 infection. Savanna monkeys (Chlorocebus spp.) are a widespread non-human primate with well-established potential as a bi-directional zoonotic/anthroponotic agent due to high levels of human interaction throughout their range in sub-Saharan Africa and the Caribbean. To characterize potential functional variation in savanna monkey ACE2 and TMPRSS2, we inspected recently published genomic data from 245 savanna monkeys, including 163 wild monkeys from Africa and the Caribbean and 82 captive monkeys from the Vervet Research Colony (VRC). We found several missense variants. One missense variant in ACE2 (X:14,077,550; Asp30Gly), common in Ch. sabaeus, causes a change in amino acid residue that has been inferred to reduce binding efficiency of SARS-CoV-2, suggesting potentially reduced susceptibility. The remaining populations appear as susceptible as humans, based on these criteria for receptor usage. All missense variants observed in wild Ch. sabaeus populations are also present in the VRC, along with two splice acceptor variants (at X:14,065,076) not observed in the wild sample that are potentially disruptive to ACE2 function. The presence of these variants in the VRC suggests a promising model for SARS-CoV-2 infection and vaccine and therapy development. In keeping with a One Health approach, characterizing actual susceptibility and potential for bi-directional zoonotic/anthroponotic transfer in savanna monkey populations may be an important consideration for controlling COVID-19 epidemics in communities with frequent human/non-human primate interactions that, in many cases, may have limited health infrastructure.


Assuntos
Chlorocebus aethiops , Infecções por Coronavirus/veterinária , Pandemias/veterinária , Peptidil Dipeptidase A/genética , Pneumonia Viral/veterinária , Doenças dos Primatas/genética , Serina Endopeptidases/genética , Enzima de Conversão de Angiotensina 2 , Animais , Betacoronavirus/metabolismo , COVID-19 , Infecções por Coronavirus/genética , Infecções por Coronavirus/transmissão , Suscetibilidade a Doenças , Pneumonia Viral/genética , Pneumonia Viral/transmissão , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo , Sequenciamento Completo do Genoma , Zoonoses/transmissão
20.
Nat Ecol Evol ; 3(8): 1253-1264, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31358949

RESUMO

The shift from a hunter-gatherer to an agricultural mode of subsistence is believed to have been associated with profound changes in the burden and diversity of pathogens across human populations. Yet, the extent to which the advent of agriculture affected the evolution of the human immune system remains unknown. Here we present a comparative study of variation in the transcriptional responses of peripheral blood mononuclear cells to bacterial and viral stimuli between Batwa rainforest hunter-gatherers and Bakiga agriculturalists from Uganda. We observed increased divergence between hunter-gatherers and agriculturalists in the early transcriptional response to viruses compared with that for bacterial stimuli. We demonstrate that a significant fraction of these transcriptional differences are under genetic control and we show that positive natural selection has helped to shape population differences in immune regulation. Across the set of genetic variants underlying inter-population immune-response differences, however, the signatures of positive selection were disproportionately observed in the rainforest hunter-gatherers. This result is counter to expectations on the basis of the popularized notion that shifts in pathogen exposure due to the advent of agriculture imposed radically heightened selective pressures in agriculturalist populations.


Assuntos
Leucócitos Mononucleares , Seleção Genética , Agricultura , Humanos , Floresta Úmida , Uganda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA