Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Int J Mol Sci ; 24(20)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37894860

RESUMO

Temozolomide (TMZ) is an important first-line treatment for glioblastoma (GBM), but there are limitations to TMZ response in terms of durability and dependence on the promoter methylation status of the DNA repair gene O6-methylguanine DNA methyltransferase (MGMT). MGMT-promoter-hypermethylated (MGMT-M) GBMs are more sensitive to TMZ than MGMT-promoter-hypomethylated (MGMT-UM) GBMs. Moreover, TMZ resistance is inevitable even in TMZ-sensitive MGMT-M GBMs. Hence, epigenetic reprogramming strategies are desperately needed in order to enhance TMZ response in both MGMT-M and MGMT-UM GBMs. In this study, we present novel evidence that the epigenetic reactivation of Tumor Suppressor Candidate 3 (TUSC3) can reprogram sensitivity of GBM stem cells (GSCs) to TMZ irrespective of MGMT promoter methylation status. Interrogation of TCGA patient GBM datasets confirmed TUSC3 promoter regulation of TUSC3 expression and also revealed a strong positive correlation between TUSC3 expression and GBM patient survival. Using a combination of loss-of-function, gain-of-function and rescue studies, we demonstrate that TUSC3 reactivation is associated with enhanced TMZ response in both MGMT-M and MGMT-UM GSCs. Further, we provide novel evidence that the demethylating agent 5-Azacitidine (5-Aza) reactivates TUSC3 expression in MGMT-M GSCs, whereas the combination of 5-Aza and MGMT inhibitor Lomeguatrib is necessary for TUSC3 reactivation in MGMT-UM GSCs. Lastly, we propose a pharmacological epigenetic reactivation strategy involving TUSC3 that leads to significantly prolonged survival in MGMT-M and MGMT-UM orthotopic GSCs models. Collectively, our findings provide a framework and rationale to further explore TUSC3-mediated epigenetic reprogramming strategies that could enhance TMZ sensitivity and outcomes in GBM. Mechanistic and translational evidence gained from such studies could contribute towards optimal design of impactful trials for MGMT-UM GBMs that currently do not have good treatment options.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Dacarbazina/farmacologia , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Metilação de DNA , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , O(6)-Metilguanina-DNA Metiltransferase/genética , Epigênese Genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
2.
Prostate ; 81(2): 109-117, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33141952

RESUMO

BACKGROUND: In prostate cancer (PCa), lack of androgen receptor (AR) regulated TMPRSS2-ETS-related gene (ERG) gene fusion (ERGnegative ) status has been associated with African American race; however, the implications of ERG status for the location of dominant tumors within the prostate remains understudied. METHODS: An African American-enriched multiinstitutional cohort of 726 PCa patients consisting of both African American men (AAM; n = 254) and European American men (EAM; n = 472) was used in the analyses. Methods of categorical analysis were used. Messenger RNA (mRNA) expression differences between anterior and posterior tumor lesions were analyzed using Wilcoxon rank-sum tests with multiple comparison corrections. RESULTS: Anti-ERG immunohistochemistry staining showed that the association between ERG status and anterior tumors is independent of race and is consistently robust for both AAM (ERGnegative 81.4% vs. ERGpositive 18.6%; p = .005) and EAM (ERGnegative 60.4% vs. ERGpositive 39.6%; p < .001). In a multivariable model, anterior tumors were more likely to be IHC-ERGnegative (odds ratio [OR]: 3.20; 95% confidence interval [CI]: 2.14-4.78; p < .001). IHC-ERGnegative were also more likely to have high-grade tumors (OR: 1.73; 95% CI: 1.06-2.82; p = .02). In the exploratory genomic analysis, mRNA expression of location-dependent genes is highly influenced by ERG status and African American race. However, tumor location did not impact the expression of AR or the major canonical AR-target genes (KLK3, AMACR, and MYC). CONCLUSIONS: ERGnegative tumor status is the strongest predictor of anterior prostate tumors, regardless of race. Furthermore, AR expression and canonical AR signaling do not impact tumor location.


Assuntos
Negro ou Afro-Americano/genética , Proteínas de Fusão Oncogênica/genética , Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Estudos de Coortes , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Neoplasias da Próstata/química , RNA Mensageiro , Regulador Transcricional ERG/análise , Regulador Transcricional ERG/genética
3.
Int J Mol Sci ; 22(15)2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34361090

RESUMO

Glioblastoma (GBM) is a highly lethal cancer that is universally refractory to the standard multimodal therapies of surgical resection, radiation, and chemotherapy treatment. Temozolomide (TMZ) is currently the best chemotherapy agent for GBM, but the durability of response is epigenetically dependent and often short-lived secondary to tumor resistance. Therapies that can provide synergy to chemoradiation are desperately needed in GBM. There is accumulating evidence that adaptive resistance evolution in GBM is facilitated through treatment-induced epigenetic modifications. Epigenetic alterations of DNA methylation, histone modifications, and chromatin remodeling have all been implicated as mechanisms that enhance accessibility for transcriptional activation of genes that play critical roles in GBM resistance and lethality. Hence, understanding and targeting epigenetic modifications associated with GBM resistance is of utmost priority. In this review, we summarize the latest updates on the impact of epigenetic modifications on adaptive resistance evolution in GBM to therapy.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Metilação de DNA , Resistencia a Medicamentos Antineoplásicos/genética , Epigênese Genética , Glioblastoma/tratamento farmacológico , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Evolução Molecular , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/patologia , Humanos
4.
Int J Mol Sci ; 23(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35008722

RESUMO

Stemness reprogramming remains a largely unaddressed principal cause of lethality in glioblastoma (GBM). It is therefore of utmost importance to identify and target mechanisms that are essential for GBM stemness and self-renewal. Previously, we implicated BIRC3 as an essential mediator of therapeutic resistance and survival adaptation in GBM. In this study, we present novel evidence that BIRC3 has an essential noncanonical role in GBM self-renewal and stemness reprogramming. We demonstrate that BIRC3 drives stemness reprogramming of human GBM cell lines, mouse GBM cell lines and patient-derived GBM stem cells (GSCs) through regulation of BMP4 signaling axis. Specifically, BIRC3 induces stemness reprogramming in GBM through downstream inactivation of BMP4 signaling. RNA-Seq interrogation of the stemness reprogramming hypoxic (pseudopalisading necrosis and perinecrosis) niche in GBM patient tissues further validated the high BIRC3/low BMP4 expression correlation. BIRC3 knockout upregulated BMP4 expression and prevented stemness reprogramming of GBM models. Furthermore, siRNA silencing of BMP4 restored stemness reprogramming of BIRC3 knockout in GBM models. In vivo silencing of BIRC3 suppressed tumor initiation and progression in GBM orthotopic intracranial xenografts. The stemness reprograming of both GSCs and non-GSCs populations highlights the impact of BIRC3 on intra-tumoral cellular heterogeneity GBM. Our study has identified a novel function of BIRC3 that can be targeted to reverse stemness programming of GBM.


Assuntos
Proteína 3 com Repetições IAP de Baculovírus/metabolismo , Reprogramação Celular , Glioblastoma/metabolismo , Glioblastoma/patologia , Células-Tronco Neoplásicas/metabolismo , Animais , Proteína 3 com Repetições IAP de Baculovírus/genética , Biomarcadores Tumorais/metabolismo , Proteína Morfogenética Óssea 4/metabolismo , Carcinogênese/metabolismo , Carcinogênese/patologia , Linhagem Celular Tumoral , Autorrenovação Celular/genética , Reprogramação Celular/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Humanos , Camundongos , Células-Tronco Neoplásicas/patologia , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Cancer Immunol Immunother ; 69(12): 2465-2476, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32556443

RESUMO

Emm55 is a bacterial gene derived from Streptococcus pyogenes (S. pyogenes) that was cloned into a plasmid DNA vaccine (pAc/emm55). In this study, we investigated the anti-tumor efficacy of pAc/emm55 in a B16 murine melanoma model. Intralesional (IL) injections of pAc/emm55 significantly delayed tumor growth compared to the pAc/Empty group. There was a significant increase in the CD8+ T cells infiltrating into the tumors after pAc/emm55 treatment compared to the control group. In addition, we observed that IL injection of pAc/emm55 increased antigen-specific T cell infiltration into tumors. Depletion of CD4+ or CD8+ T cells abrogated the anti-tumor effect of pAc/emm55. Combination treatment of IL injection of pAc/emm55 with anti-PD-1 antibody significantly delayed tumor growth compared to either monotherapy. pAc/emm55 treatment combined with PD-1 blockade enhanced anti-tumor immune response and improved systemic anti-tumor immunity. Together, these strategies may lead to improvements in the treatment of patients with melanoma.


Assuntos
Antígenos de Bactérias/imunologia , Antineoplásicos Imunológicos/administração & dosagem , Proteínas da Membrana Bacteriana Externa/imunologia , Imunoterapia/métodos , Melanoma Experimental/terapia , Animais , Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/genética , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral/transplante , Terapia Combinada/métodos , Feminino , Humanos , Injeções Intralesionais , Linfócitos do Interstício Tumoral/imunologia , Melanoma Experimental/imunologia , Camundongos , Plasmídeos/administração & dosagem , Plasmídeos/genética , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia
6.
J Urol ; 202(2): 247-255, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31107158

RESUMO

PURPOSE: Most prostate cancer in African American men lacks the ETS (E26 transforming specific) family fusion event (ETS-). We aimed to establish clinically relevant biomarkers in African American men by studying ETS dependent gene expression patterns to identified race specific genes predictive of outcomes. MATERIALS AND METHODS: Two multicenter cohorts of a total of 1,427 men were used for the discovery and validation (635 and 792 men, respectively) of race specific predictive biomarkers. We used false discovery rate adjusted q values to identify race and ETS dependent genes which were differentially expressed in African American men who experienced biochemical recurrence within 5 years. Principal component modeling along with survival analysis was done to assess the accuracy of the gene panel in predicting recurrence. RESULTS: We identified 3,047 genes which were differentially expressed based on ETS status. Of these genes 362 were differentially expressed in a race specific manner (false discovery rate 0.025 or less). A total of 81 genes were race specific and over expressed in African American men who experienced biochemical recurrence. The final gene panel included APOD, BCL6, EMP1, MYADM, SRGN and TIMP3. These genes were associated with 5-year biochemical recurrence (HR 1.97, 95% CI 1.27-3.06, p = 0.002) and they improved the predictive accuracy of clinicopathological variables only in African American men (60-month time dependent AUC 0.72). CONCLUSIONS: In an effort to elucidate biological features associated with prostate cancer aggressiveness in African American men we identified ETS dependent biomarkers predicting early onset biochemical recurrence only in African American men. Thus, these ETS dependent biomarkers representing ideal candidates for biomarkers of aggressive disease in this patient population.


Assuntos
Negro ou Afro-Americano/genética , Neoplasias da Próstata/genética , Idoso , Biomarcadores Tumorais/genética , Estudos de Coortes , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/genética , Prognóstico , Proteínas Proto-Oncogênicas c-ets/genética
7.
Hum Genomics ; 11(1): 22, 2017 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-28870239

RESUMO

BACKGROUND: Observations of recurrent somatic mutations in tumors have led to identification and definition of signaling and other pathways that are important for cancer progression and therapeutic targeting. As tumor cells contain both an individual's inherited genetic variants and somatic mutations, challenges arise in distinguishing these events in massively parallel sequencing datasets. Typically, both a tumor sample and a "normal" sample from the same individual are sequenced and compared; variants observed only in the tumor are considered to be somatic mutations. However, this approach requires two samples for each individual. RESULTS: We evaluate a method of detecting somatic mutations in tumor samples for which only a subset of normal samples are available. We describe tuning of the method for detection of mutations in tumors, filtering to remove inherited variants, and comparison of detected mutations to several matched tumor/normal analysis methods. Filtering steps include the use of population variation datasets to remove inherited variants as well a subset of normal samples to remove technical artifacts. We then directly compare mutation detection with tumor-only and tumor-normal approaches using the same sets of samples. Comparisons are performed using an internal targeted gene sequencing dataset (n = 3380) as well as whole exome sequencing data from The Cancer Genome Atlas project (n = 250). Tumor-only mutation detection shows similar recall (43-60%) but lesser precision (20-21%) to current matched tumor/normal approaches (recall 43-73%, precision 30-82%) when compared to a "gold-standard" tumor/normal approach. The inclusion of a small pool of normal samples improves precision, although many variants are still uniquely detected in the tumor-only analysis. CONCLUSIONS: A detailed method for somatic mutation detection without matched normal samples enables study of larger numbers of tumor samples, as well as tumor samples for which a matched normal is not available. As sensitivity/recall is similar to tumor/normal mutation detection but precision is lower, tumor-only detection is more appropriate for classification of samples based on known mutations. Although matched tumor-normal analysis is preferred due to higher precision, we demonstrate that mutation detection without matched normal samples is possible for certain applications.


Assuntos
Análise Mutacional de DNA/métodos , Neoplasias/genética , Software , Bases de Dados Factuais , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mutação , Sensibilidade e Especificidade
8.
Breast Cancer Res ; 19(1): 71, 2017 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-28629479

RESUMO

BACKGROUND: A unique 12-chemokine gene expression score (CS) accurately predicted the presence of tumor-localized, ectopic lymph node-like structures (TL-ELNs) and improved overall survival (OS) in primary colorectal cancer and metastatic melanoma. We analyzed the correlation between CS, clinicopathological variables, molecular data, and 366 survival in Moffitt Cancer Center's Total Cancer Care (TCC) patients with non-metastatic breast cancer. METHODS: Affymetrix gene expression profiles were used to interrogate the CS by the principal component method. Breast tumors were classified as high or low score based on median split, and correlations between clinicopathologic variables, PAM50 molecular subtype, and ELN formation were analyzed using the TCC dataset. Differences in overall survival (OS) and recurrence-free survival (RFS) in the larger KM Plot breast cancer public datasets were compared using Kaplan-Meier curves. RESULTS: We divided the Total Cancer Care (TCC) breast cancer patients into two groups of high or low CS. Mean CS was 0.24 (range, 2.2-2.1). Patients with higher CS were more likely to be white (172 vs. 159; p = 0.03), had poorly differentiated tumors (112 vs. 59; p <0.0001), ER/PR negative (41 vs. 26) and HER2 positive (36 vs. 19; p = 0.001), and contain TL-ELNs. Higher CS scores were also seen in the basal and HER2+ molecular subtypes. In the KM Plot breast cancer datasets higher CS patients demonstrated superior OS (HR = 0.73, p = 0.008) and RFS (HR 0.76, p = <0.0001), especially in basal and HER2+ patients. CONCLUSIONS: High CS breast tumors tend to be higher grade, basal or HER2+, and present more frequently in Caucasians. However, this group of patients also shows the presence of TL-ELNs within the tumor microenvironment and has better survival outcomes. The CS is a novel tool that can identify breast cancer patients with tumors of a unique intratumoral immune composition and better prognosis. Whether or not the CS is a predictive response marker in breast cancer patients undergoing immunotherapy remains to be determined.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Quimiocinas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais , Neoplasias da Mama/mortalidade , Neoplasias da Mama/terapia , Feminino , Seguimentos , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Gradação de Tumores , Invasividade Neoplásica , Estadiamento de Neoplasias , Prognóstico , Microambiente Tumoral/genética , Adulto Jovem
9.
Gynecol Oncol ; 140(2): 259-63, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26731723

RESUMO

OBJECTIVES: Ovarian cancer (OVCA) is the leading cause of mortality among women with gynecologic malignancy, in part due to the development of chemoresistance. We sought to identify micro-RNAs (miRNAs) associated with in vitro development of OVCA chemoresistance that may also represent potential targets for therapy. METHODS: In this study, four OVCA cell lines (A2780CP, A2780S, IGROV1, and OVCAR5) were serially treated with cisplatin in parallel with measurements of miRNA expression changes. RESULTS: Nine miRNAs were found to be associated with increasing cisplatin resistance (IC50) (p<0.01); however, only 5 of these miRNAs have publically available information. Pathway analysis identified 15 molecular signaling pathways that were represented by genes predicted to be targets of the 5 miRNAs (false discovery rate<0.05), 11 of which are associated with the epithelial-mesenchymal transition (EMT). Further analysis identified 2 of those pathways as being associated with overall survival in 218 patients with OVCA. CONCLUSIONS: Collectively, this panel of miRNAs associated with in vitro evolution of OVCA cisplatin resistance and the pathways identified to be associated with EMT and overall patient survival provide a framework for further investigations into EMT as a therapeutic target in patients with OVCA.


Assuntos
Cisplatino/farmacologia , MicroRNAs/biossíntese , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Antineoplásicos/farmacologia , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal/genética , Feminino , Humanos , MicroRNAs/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Taxa de Sobrevida
10.
Cells ; 13(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38891074

RESUMO

Glioblastoma (GBM) is the most common yet uniformly fatal adult brain cancer. Intra-tumoral molecular and cellular heterogeneities are major contributory factors to therapeutic refractoriness and futility in GBM. Molecular heterogeneity is represented through molecular subtype clusters whereby the proneural (PN) subtype is associated with significantly increased long-term survival compared to the highly resistant mesenchymal (MES) subtype. Furthermore, it is universally recognized that a small subset of GBM cells known as GBM stem cells (GSCs) serve as reservoirs for tumor recurrence and progression. The clonal evolution of GSC molecular subtypes in response to therapy drives intra-tumoral heterogeneity and remains a critical determinant of GBM outcomes. In particular, the intra-tumoral MES reprogramming of GSCs using current GBM therapies has emerged as a leading hypothesis for therapeutic refractoriness. Preventing the intra-tumoral divergent evolution of GBM toward the MES subtype via new treatments would dramatically improve long-term survival for GBM patients and have a significant impact on GBM outcomes. In this review, we examine the challenges of the role of MES reprogramming in the malignant clonal evolution of glioblastoma and provide future perspectives for addressing the unmet therapeutic need to overcome resistance in GBM.


Assuntos
Neoplasias Encefálicas , Reprogramação Celular , Evolução Clonal , Glioblastoma , Humanos , Glioblastoma/patologia , Glioblastoma/genética , Evolução Clonal/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Reprogramação Celular/genética , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/metabolismo , Animais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia
11.
Cancer Prev Res (Phila) ; 17(4): 169-176, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38286404

RESUMO

As oropharyngeal cancer (OPC) associated with human papillomavirus (HPV) increases in men, the need for a screening test to diagnose OPC early is crucial. This study agnostically identified differentially methylated CpG sites to identify additional biomarkers to improve screening for early OPC.DNA was extracted from oral gargles of 89 early cases and 108 frequency matched healthy controls, and processed for genome-wide methylation using the Illumina Infinium MethylationEPIC BeadChip. Selected sites were combined with our prior methylation data in the EPB41L3 gene (CpG sites 438, 427, and 425) and oral HPV16 and HPV18 status were considered as binary variables (positive/negative). Lasso regression identified CpG sites strongly associated with early OPC. ROC curves with AUC were generated. The panel was validated utilizing bootstrap resampling.Machine learning analyses identified 14 markers that are significantly associated with early OPC, including one EPB41L3 CpG site (438) and oral HPV16 status. A final model was trained on all available samples using the discovered panel and was able to predict early OPC compared with controls with an AUC of 0.970 on the training set. In the bootstrap validation sets, the average AUC was 0.935, indicating adequate internal validity.Our data suggest that this panel can detect OPC early, however external validation of this panel is needed. Further refinement of a panel of biomarkers to diagnose OPC earlier is urgently needed to prevent complex treatment of OPC and associated comorbidities, while reducing risk of recurrence. PREVENTION RELEVANCE: This study identified biomarkers using genome-wide methylation to create a panel capable of discerning early oropharyngeal cancer (OPC) from those without OPC. Such a biomarker panel would be an effective tool to detect OPC early and prevent complications of treatment associated with later diagnosis.


Assuntos
Neoplasias Orofaríngeas , Infecções por Papillomavirus , Masculino , Humanos , Papillomavirus Humano , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/diagnóstico , Neoplasias Orofaríngeas/diagnóstico , Neoplasias Orofaríngeas/genética , Biomarcadores Tumorais/genética , Papillomavirus Humano 16/genética , Metilação , Proteínas dos Microfilamentos
12.
BMC Bioinformatics ; 14: 153, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23647742

RESUMO

BACKGROUND: Many gene expression normalization algorithms exist for Affymetrix GeneChip microarrays. The most popular of these is RMA, primarily due to the precision and low noise produced during the process. A significant strength of this and similar approaches is the use of the entire set of arrays during both normalization and model-based estimation of signal. However, this leads to differing estimates of expression based on the starting set of arrays, and estimates can change when a single, additional chip is added to the set. Additionally, outlier chips can impact the signals of other arrays, and can themselves be skewed by the majority of the population. RESULTS: We developed an approach, termed IRON, which uses the best-performing techniques from each of several popular processing methods while retaining the ability to incrementally renormalize data without altering previously normalized expression. This combination of approaches results in a method that performs comparably to existing approaches on artificial benchmark datasets (i.e. spike-in) and demonstrates promising improvements in segregating true signals within biologically complex experiments. CONCLUSIONS: By combining approaches from existing normalization techniques, the IRON method offers several advantages. First, IRON normalization occurs pair-wise, thereby avoiding the need for all chips to be normalized together, which can be important for large data analyses. Secondly, the technique does not require similarity in signal distribution across chips for normalization, which can be important for maintaining biologically relevant differences in a heterogeneous background. Lastly, IRON introduces fewer post-processing artifacts, particularly in data whose behavior violates common assumptions. Thus, the IRON method provides a practical solution to common needs of expression analysis. A software implementation of IRON is available at [http://gene.moffitt.org/libaffy/].


Assuntos
Perfilação da Expressão Gênica/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Algoritmos , Artefatos , Software
13.
Am J Obstet Gynecol ; 209(6): 576.e1-576.e16, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23933223

RESUMO

OBJECTIVE: The objective of the study was to evaluate the biological validity of ovarian cancer (OVCA) screening and early detection efforts and to characterize signaling pathways associated with human cancer metastasis and patient survival. STUDY DESIGN: Using genome-wide expression profiling and deoxyribonucleic acid sequencing, we compared pelvic and matched extrapelvic implants from 30 patients with advanced-stage OVCA for expression of molecular signaling pathways and p53 gene mutations. Differentially expressed pathways were further evaluated in a series of primary or early-stage vs metastatic or recurrent cancer samples from 389 ovarian, prostate, and oral cancer patients. Metastasis pathways were also evaluated for associations with survival in 9 independent clinicogenomic datasets from 1691 ovarian, breast, colon, brain, and lung cancer and leukemia patients. The inhibitory effects of 1 pathway (transforming growth factor [TGF]-WNT) on in vitro OVCA cell migration were studied. RESULTS: Pelvic and extrapelvic OVCA implants demonstrated similar patterns of signaling pathway expression and identical p53 mutations. However, we identified 3 molecular pathways/cellular processes that were differentially expressed between pelvic and extrapelvic OVCA samples and between primary/early-stage and metastatic/advanced or recurrent ovarian, oral, and prostate cancers. Furthermore, their expression was associated with overall survival from ovarian cancer (P = .006), colon cancer (1 pathway at P = .005), and leukemia (P = .05). Artesunate-induced TGF-WNT pathway inhibition impaired OVCA cell migration. CONCLUSION: Advanced-stage OVCA has a unifocal origin in the pelvis. Molecular pathways associated with extrapelvic OVCA spread are also associated with metastasis from other human cancers and with overall patient survival. Such pathways represent appealing therapeutic targets for patients with metastatic disease.


Assuntos
Expressão Gênica , Genes p53 , Recidiva Local de Neoplasia/genética , Neoplasias Ovarianas/genética , Transdução de Sinais/genética , Adulto , Detecção Precoce de Câncer , Feminino , Perfilação da Expressão Gênica , Humanos , Mutação , Metástase Neoplásica/genética , Metástase Neoplásica/fisiopatologia , Recidiva Local de Neoplasia/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/mortalidade , Análise de Componente Principal , Transdução de Sinais/fisiologia , Análise de Sobrevida , Análise Serial de Tecidos
14.
Front Oncol ; 13: 1048419, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37139155

RESUMO

Clear cell renal cell carcinomas (ccRCC) are characterized by arm-wide chromosomal alterations. Loss at 14q is associated with disease aggressiveness in ccRCC, which responds poorly to chemotherapeutics. The 14q locus contains one of the largest miRNA clusters in the human genome; however, little is known about the contribution of these miRNAs to ccRCC pathogenesis. In this regard, we investigated the expression pattern of selected miRNAs at the 14q32 locus in TCGA kidney tumors and in ccRCC cell lines. We demonstrated that the miRNA cluster is downregulated in ccRCC (and cell lines) as well as in papillary kidney tumors relative to normal kidney tissues (and primary renal proximal tubule epithelial (RPTEC) cells). We demonstrated that agents modulating expression of DNMT1 (e.g., 5-Aza-deoxycytidine) could modulate 14q32 miRNA expression in ccRCC cell lines. Lysophosphatidic acid (LPA, a lysophospholipid mediator elevated in ccRCC) not only increased labile iron content but also modulated expression of a 14q32 miRNA. Through an overexpression approach targeting a subset of 14q32 miRNAs (specifically at subcluster A: miR-431-5p, miR-432-5p, miR-127-3p, and miR-433-3p) in 769-P cells, we uncovered changes in cellular viability and claudin-1, a tight junction marker. A global proteomic approach was implemented using these miRNA overexpressing cell lines which uncovered ATXN2 as a highly downregulated target. Collectively, these findings support a contribution of miRNAs at 14q32 in ccRCC pathogenesis.

15.
Blood Cancer Discov ; 4(4): 294-317, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37070973

RESUMO

The MYC oncoprotein is activated in a broad spectrum of human malignancies and transcriptionally reprograms the genome to drive cancer cell growth. Given this, it is unclear if targeting a single effector of MYC will have therapeutic benefit. MYC activates the polyamine-hypusine circuit, which posttranslationally modifies the eukaryotic translation factor eIF5A. The roles of this circuit in cancer are unclear. Here we report essential intrinsic roles for hypusinated eIF5A in the development and maintenance of MYC-driven lymphoma, where the loss of eIF5A hypusination abolishes malignant transformation of MYC-overexpressing B cells. Mechanistically, integrating RNA sequencing, ribosome sequencing, and proteomic analyses revealed that efficient translation of select targets is dependent upon eIF5A hypusination, including regulators of G1-S phase cell-cycle progression and DNA replication. This circuit thus controls MYC's proliferative response, and it is also activated across multiple malignancies. These findings suggest the hypusine circuit as a therapeutic target for several human tumor types. SIGNIFICANCE: Elevated EIF5A and the polyamine-hypusine circuit are manifest in many malignancies, including MYC-driven tumors, and eIF5A hypusination is necessary for MYC proliferative signaling. Not-ably, this circuit controls an oncogenic translational program essential for the development and maintenance of MYC-driven lymphoma, supporting this axis as a target for cancer prevention and treatment. See related commentary by Wilson and Klein, p. 248. This article is highlighted in the In This Issue feature, p. 247.


Assuntos
Linfoma , Neoplasias , Humanos , Poliaminas/metabolismo , Proteômica
16.
Cancer Res ; 83(23): 3901-3919, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37702657

RESUMO

Multiple myeloma remains an incurable malignancy due to acquisition of intrinsic programs that drive therapy resistance. Here we report that casein kinase-1δ (CK1δ) and CK1ε are therapeutic targets in multiple myeloma that are necessary to sustain mitochondrial metabolism. Specifically, the dual CK1δ/CK1ε inhibitor SR-3029 had potent in vivo and ex vivo anti-multiple myeloma activity, including against primary multiple myeloma patient specimens. RNA sequencing (RNA-seq) and metabolic analyses revealed inhibiting CK1δ/CK1ε disables multiple myeloma metabolism by suppressing genes involved in oxidative phosphorylation (OxPhos), reducing citric acid cycle intermediates, and suppressing complexes I and IV of the electron transport chain. Finally, sensitivity of multiple myeloma patient specimens to SR-3029 correlated with elevated expression of mitochondrial genes, and RNA-seq from 687 multiple myeloma patient samples revealed that increased CSNK1D, CSNK1E, and OxPhos genes correlate with disease progression and inferior outcomes. Thus, increases in mitochondrial metabolism are a hallmark of multiple myeloma progression that can be disabled by targeting CK1δ/CK1ε. SIGNIFICANCE: CK1δ and CK1ε are attractive therapeutic targets in multiple myeloma whose expression increases with disease progression and connote poor outcomes, and that are necessary to sustain expression of genes directing OxPhos.


Assuntos
Caseína Quinase Idelta , Mieloma Múltiplo , Humanos , Caseína Quinase Idelta/genética , Caseína Quinase Idelta/metabolismo , Mieloma Múltiplo/genética , Sobrevivência Celular , Fosforilação , Progressão da Doença
17.
bioRxiv ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38014063

RESUMO

Background: Immunotherapy (IO) has improved survival for patients with advanced clear cell renal cell carcinoma (ccRCC), but resistance to therapy develops in most patients. We use cellular-resolution spatial transcriptomics in patients with IO naïve and IO exposed primary ccRCC tumors to better understand IO resistance. Spatial molecular imaging (SMI) was obtained for tumor and adjacent stroma samples. Spatial gene set enrichment analysis (GSEA) and autocorrelation (coupling with high expression) of ligand-receptor transcript pairs were assessed. Multiplex immunofluorescence (mIF) validation was used for significant autocorrelative findings and the cancer genome atlas (TCGA) and the clinical proteomic tumor analysis consortium (CPTAC) databases were queried to assess bulk RNA expression and proteomic correlates. Results: 21 patient samples underwent SMI. Viable tumors following IO harbored more stromal CD8+ T cells and neutrophils than IO naïve tumors. YES1 was significantly upregulated in IO exposed tumor cells. The epithelial-mesenchymal transition pathway was enriched on spatial GSEA and the associated transcript pair COL4A1-ITGAV had significantly higher autocorrelation in the stroma. Fibroblasts, tumor cells, and endothelium had the relative highest expression. More integrin αV+ cells were seen in IO exposed stroma on mIF validation. Compared to other cancers in TCGA, ccRCC tumors have the highest expression of both COL4A1 and ITGAV. In CPTAC, collagen IV protein was more abundant in advanced stages of disease. Conclusions: On spatial transcriptomics, COL4A1 and ITGAV were more autocorrelated in IO-exposed stroma compared to IO-naïve tumors, with high expression amongst fibroblasts, tumor cells, and endothelium. Integrin represents a potential therapeutic target in IO treated ccRCC.

18.
Cancer Immunol Res ; 10(10): 1263-1279, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-35969234

RESUMO

Chronic T-cell receptor (TCR) signaling in the tumor microenvironment is known to promote T-cell dysfunction. However, we reasoned that poorly immunogenic tumors may also compromise T cells by impairing their metabolism. To address this, we assessed temporal changes in T-cell metabolism, fate, and function in models of B-cell lymphoma driven by Myc, a promoter of energetics and repressor of immunogenicity. Increases in lymphoma burden most significantly impaired CD4+ T-cell function and promoted regulatory T cell (Treg) and Th1-cell differentiation. Metabolomic analyses revealed early reprogramming of CD4+ T-cell metabolism, reduced glucose uptake, and impaired mitochondrial function, which preceded changes in T-cell fate. In contrast, B-cell lymphoma metabolism remained robust during tumor progression. Finally, mitochondrial functions were impaired in CD4+ and CD8+ T cells in lymphoma-transplanted OT-II and OT-I transgenic mice, respectively. These findings support a model, whereby early, TCR-independent, metabolic interactions with developing lymphomas limits T cell-mediated immune surveillance.


Assuntos
Linfoma de Células B , Linfoma , Animais , Linfócitos T CD4-Positivos , Diferenciação Celular , Glucose/metabolismo , Linfoma/metabolismo , Linfoma de Células B/metabolismo , Camundongos , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/metabolismo , Microambiente Tumoral
19.
Cancer Res ; 82(7): 1234-1250, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35149590

RESUMO

MYC family oncoproteins are regulators of metabolic reprogramming that sustains cancer cell anabolism. Normal cells adapt to nutrient-limiting conditions by activating autophagy, which is required for amino acid (AA) homeostasis. Here we report that the autophagy pathway is suppressed by Myc in normal B cells, in premalignant and neoplastic B cells of Eµ-Myc transgenic mice, and in human MYC-driven Burkitt lymphoma. Myc suppresses autophagy by antagonizing the expression and function of transcription factor EB (TFEB), a master regulator of autophagy. Mechanisms that sustained AA pools in MYC-expressing B cells include coordinated induction of the proteasome and increases in AA transport. Reactivation of the autophagy-lysosomal pathway by TFEB disabled the malignant state by disrupting mitochondrial functions, proteasome activity, AA transport, and AA and nucleotide metabolism, leading to metabolic anergy, growth arrest, and apoptosis. This phenotype provides therapeutic opportunities to disable MYC-driven malignancies, including AA restriction and treatment with proteasome inhibitors. SIGNIFICANCE: MYC suppresses TFEB and autophagy and controls amino acid homeostasis by upregulating amino acid transport and the proteasome, and reactivation of TFEB disables the metabolism of MYC-driven tumors.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Lisossomos , Proteínas Proto-Oncogênicas c-myc , Aminoácidos/metabolismo , Animais , Autofagia/fisiologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Homeostase , Humanos , Lisossomos/metabolismo , Camundongos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética
20.
Eur Urol ; 82(4): 354-362, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35718636

RESUMO

BACKGROUND: Alternative mRNA splicing can be dysregulated in cancer, resulting in the generation of aberrant splice variants (SVs). Given the paucity of actionable genomic mutations in clear cell renal cell carcinoma (ccRCC), aberrant SVs may be an avenue to novel mechanisms of pathogenesis. OBJECTIVE: To identify and characterize aberrant SVs enriched in ccRCC. DESIGN, SETTING, AND PARTICIPANTS: Using RNA-seq data from the Cancer Cell Line Encyclopedia, we identified neojunctions uniquely expressed in ccRCC. Candidate SVs were then checked for expression across normal tissue in the Genotype-Tissue Expression Project and primary tumor tissue from The Cancer Genome Atlas (TCGA), Clinical Proteomic Tumor Analysis Consortium (CPTAC), and our institutional Total Cancer Care database. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Clinicopathologic, genomic, and survival data were available for all cohorts. Epigenetic data were available for the TCGA and CPTAC cohorts. Proteomic data were available for the CPTAC cohort. The association of aberrant SV expression with these variables was examined using the Kruskal-Wallis test, pairwise t test, Spearman correlation test, and Cox regression analysis. RESULTS AND LIMITATIONS: Our pipeline identified 16 ccRCC-enriched SVs. EGFR, HPCAL1-SV and RNASET2-SV expression was negatively correlated with gene-specific CpG methylation. We derived a survival risk score based primarily on the expression of five SVs (RNASET2, FGD1, PDZD2, COBLL1, and PTPN14), which was consistent and applicable across multiple cohorts on multivariate analysis. The splicing factor RBM4, which modulates splicing of HIF-1α, exhibited significantly lower expression at the protein level in the high-risk group, as defined by our SV-based score. CONCLUSIONS: We describe 16 aberrant SVs enriched in ccRCC, many of which are associated with disease biology and/or clinical outcomes. This study provides a novel strategy for identifying and characterizing disease-specific aberrant SVs. PATIENT SUMMARY: We describe a method to identify disease targets and biomarkers using transcriptomic analysis beyond somatic mutations or gene expression. Kidney tumors express unique splice variants that may provide additional prognostic information following surgery.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Proteogenômica , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Carcinoma de Células Renais/patologia , Epigênese Genética , Humanos , Neoplasias Renais/patologia , Mutação , Prognóstico , Proteínas Tirosina Fosfatases não Receptoras/genética , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Proteômica , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA