Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Clin Oral Investig ; 22(6): 2209-2218, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29305689

RESUMO

OBJECTIVES: The aim of this study was to evaluate the influence of nanostructured zirconium dioxide incorporation in an experimental adhesive resin. METHODS: ZrO2 particles were characterized by X-ray diffraction (XRD), micro-Raman spectroscopy and Brunauer-Emmett-Teller (B.E.T). Experimental adhesive resins were formulated with 0, 0.5, 1, 4.8, and 9.1% ZrO2 in weight. The adhesives were evaluated based on degree of conversion (DC), radiopacity, softening in solvent and microtensile bond strength (µTBS) 24 h and after 1 year of aging. Mineral deposition at the hybrid layer was assessed with micro-Raman spectroscopy at the baseline and after 14 days. RESULTS: XRD showed monoclinic and tetragonal phases of ZrO2.particles. B.E.T data revealed a surface area of 37.41 m2/g, and typical chemical groups were shown on the Raman spectra. The addition of ZrO2 did not influence the radiopacity. The addition of 4.8% and 9.1 wt.% ZrO2 showed higher initial hardness with increased softening in solvent (P < 0.05) and promoted mineral deposition at the dentin interface. DC was significantly increased in the group with 1% ZrO2 (P < 0.05). The µTBS test showed difference on the group with 9.1 wt.% of ZrO2, with a significant reduction after aging. CONCLUSION: The incorporation of ZrO2 promoted mineral deposition on the adhesive interface and the addition of 1 wt.% caused a significant increase on the DC without compromising the other physicochemical characteristics, which may prove promising for the development of new dental adhesive systems. CLINICAL RELEVANCE: The mineral deposition on the hybrid layer can result in a longer stability of the adhesive, thus delaying the hydrolytic degradation.


Assuntos
Cimentos Dentários/síntese química , Cimentos de Resina/síntese química , Zircônio/química , Bis-Fenol A-Glicidil Metacrilato/química , Teste de Materiais , Metacrilatos/química , Nanoestruturas , Polietilenoglicóis/química , Ácidos Polimetacrílicos/química , Análise Espectral Raman , Resistência à Tração , Difração de Raios X
2.
J Environ Manage ; 130: 166-75, 2013 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-24076517

RESUMO

Multi-walled carbon nanotubes (MWCNT) and powder activated carbon (PAC) were used as adsorbents for adsorption of Direct Blue 53 dye (DB-53) from aqueous solutions. The adsorbents were characterised using Raman spectroscopy, N2 adsorption/desorption isotherms, and scanning and transmission electron microscopy. The effects of initial pH, contact time and temperature on adsorption capacity of the adsorbents were investigated. At pH 2.0, optimum adsorption of the dye was achieved by both adsorbents. Equilibrium contact times of 3 and 4 h were achieved by MWCNT and PAC adsorbents, respectively. The general order kinetic model provided the best fit of the experimental data compared to pseudo-first order and pseudo-second order kinetic adsorption models. For DB-53 dye, the equilibrium data (298-323 K) were best fitted to the Sips isotherm model. The maximum sorption capacity for adsorption of the dye occurred at 323 K, with the values of 409.4 and 135.2 mg g(-1) for MWCNT and PAC, respectively. Studies of adsorption/desorption were conducted and the results showed that DB-53 loaded MWCNT could be regenerated (97.85%) using a mixture 50% acetone + 50% of 3 mol L(-1) NaOH. Simulated dye house effluents were used to evaluate the application of the adsorbents for effluent treatment (removal of 99.87% and 97.00% for MWCNT and PAC, respectively, were recorded).


Assuntos
Compostos Azo/química , Corantes/química , Nanotubos de Carbono/química , Purificação da Água/métodos , Adsorção , Carvão Vegetal/química , Concentração de Íons de Hidrogênio , Cinética
3.
ACS Omega ; 8(49): 46406-46413, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38107888

RESUMO

Waste foundation sand (WFS) is one of the most abundant residues in the foundation industry. Currently, its annual production is estimated to be three million tons. This material has properties that make it an attractive candidate for implantation as an alternative constituent to a natural fine aggregate in concrete applications. This application can promote greater sustainability, as it would establish a noble destination for the waste generated in large quantities by the metallurgical industry in addition to reducing the exploitation of a natural resource widely used by the civil construction industry. Given this, the present study observed the test of three different proportions of replacement, 25, 50, and 100% by mass, of natural sand by WFS in concrete. To assess the feasibility of these replacements, several tests were carried out covering mechanical properties and aspects related to the durability of concrete. The results indicated a significant improvement in the mechanical performance, with a resistance gain of 25% in relation to the reference concrete. As for the modulus of elasticity, there was no significant variation. As for aspects related to durability, both the absorption test and the alkali aggregate reaction test did not show statistically significant disparity, which attests to the technical feasibility of using nonconcrete WFS.

4.
ACS Omega ; 8(24): 21983-21995, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37360436

RESUMO

Core-shell magnetic air-stable nanoparticles have attracted increasing interest in recent years. Attaining a satisfactory distribution of magnetic nanoparticles (MNPs) in polymeric matrices is difficult due to magnetically induced aggregation, and supporting the MNPs on a nonmagnetic core-shell is a well-established strategy. In order to obtain magnetically active polypropylene (PP) nanocomposites by melt mixing, the thermal reduction of graphene oxides (TrGO) at two different temperatures (600 and 1000 °C) was carried out, and, subsequently, metallic nanoparticles (Co or Ni) were dispersed on them. The XRD patterns of the nanoparticles show the characteristic peaks of the graphene, Co, and Ni nanoparticles, where the estimated sizes of Ni and Co were 3.59 and 4.25 nm, respectively. The Raman spectroscopy presents typical D and G bands of graphene materials as well as the corresponding peaks of Ni and Co nanoparticles. Elemental and surface area studies show that the carbon content and surface area increase with thermal reduction, as expected, following a reduction in the surface area by the support of MNPs. Atomic absorption spectroscopy demonstrates about 9-12 wt % metallic nanoparticles supported on the TrGO surface, showing that the reduction of GO at two different temperatures has no significant effect on the support of metallic nanoparticles. Fourier transform infrared (FT-IR) spectroscopy shows that the addition of a filler does not alter the chemical structure of the polymer. Scanning electron microscopy of the fracture interface of the samples demonstrates consistent dispersion of the filler in the polymer. The TGA analysis shows that, with the incorporation of the filler, the initial (Tonset) and maximum (Tmax) degradation temperatures of the PP nanocomposites increase up to 34 and 19 °C, respectively. The DSC results present an improvement in the crystallization temperature and percent crystallinity. The filler addition slightly enhances the elastic modulus of the nanocomposites. The results of the water contact angle confirm that the prepared nanocomposites are hydrophilic. Importantly, the diamagnetic matrix is transformed into a ferromagnetic one with the addition of the magnetic filler.

5.
Materials (Basel) ; 16(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36837223

RESUMO

The aim of the present investigation is to evaluate the influence of the powder size of Cr3C2-25NiCr spraying powder on the fatigue behavior of HVOF-sprayed coating on the ASTM A516 steel substrate. Conventional commercial Cr3C2-25NiCr spraying powder was previously treated through high-energy milling. The crystallite sizes of milled powders were measured by X-ray diffraction and transmission electronic microscopy. Three different powder formats of the same Cr3C2-25NiCr composite were subjected to HVOF spraying to produce (i) a Milled-Coating (from high-energy milled spray powder), (ii) an Original-Coating (from conventional commercial spray powder), and (iii) a 50%-50% mixture of both (Milled + Original-Coating). The same spraying conditions were adopted for all the assessed cases. The sprayed coatings were investigated through the Knoop hardness test and SEM-EDS analysis. In addition, 3-point bending fatigue tests were conducted at different stress levels up to 107 cycles. The coating morphology and roughness effects on fatigue behavior were analyzed. The Cr3C2-25NiCr milled coating presented a lower fatigue life above the fatigue limit and a higher fatigue limit than other coatings; this outcome could be attributed to its lower surface roughness and finer grain size microstructure.

6.
Polymers (Basel) ; 15(18)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37765561

RESUMO

Nanoparticle-filled polymers (i.e., nanocomposites) can exhibit characteristics unattainable by the unfilled polymer, making them attractive to engineer structural composites. However, the transition of particulate fillers from the micron to the nanoscale requires a comprehensive understanding of how particle downsizing influences molecular interactions and organization across multiple length scales, ranging from chemical bonding to microstructural evolution. This work outlines the advancements described in the literature that have become relevant and have shaped today's understanding of the processing-structure-property relationships in polymer nanocomposites. The main inorganic and organic particles that have been incorporated into polymers are examined first. The commonly practiced methods for nanoparticle incorporation are then highlighted. The development in mechanical properties-such as tensile strength, storage modulus and glass transition temperature-in the selected epoxy matrix nanocomposites described in the literature was specifically reviewed and discussed. The significant effect of particle content, dispersion, size, and mean free path on thermomechanical properties, commonly expressed as a function of weight percentage (wt.%) of added particles, was found to be better explained as a function of particle crowding (number of particles and distance among them). From this work, it was possible to conclude that the dramatic effect of particle size for the same tiny amount of very small and well-dispersed particles brings evidence that particle size and the particle weight content should be downscaled together.

7.
Environ Sci Pollut Res Int ; 30(13): 36405-36421, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36547826

RESUMO

This study characterized and investigated the toxicity of two multi-walled carbon nanotubes (MWCNT) NM-401 and NM-403 at 60 and 180 µg after four repeated intratracheal instillations; follow-up times were 3, 7, 30, and 90 days after the last instillation. NM-401 was needle-like, long, and thick, while NM-403 was entangled, short, and thin. Both MWCNT types induced transient pulmonary and systemic alterations in renal function and oxidative lipid damage markers in recent times. Animals showed general toxicity in the immediate times after exposures, in addition to increased pulmonary LDH release at day 3. In further times, decreased liver and kidney relative weights were noted at higher MWCNT doses. Lung histological damages included pulmonary fibrosis, for both MWCNT types, similarly to asbestos; single liver and kidney histological alterations were present. Repeated instillations led to persistent pulmonary damage at low doses, and possibly the extrapulmonary effects may be associated with the consecutive exposures.


Assuntos
Nanotubos de Carbono , Fibrose Pulmonar , Animais , Nanotubos de Carbono/toxicidade , Pulmão , Fibrose Pulmonar/patologia , Fatores de Tempo , Líquido da Lavagem Broncoalveolar
8.
Phys Chem Chem Phys ; 14(31): 11139-53, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22781834

RESUMO

Multi-walled and single-walled carbon nanotubes were used as nanoadsorbents for the successful removal of Reactive Blue 4 textile dye from aqueous solutions. The adsorbents were characterised by infrared and Raman spectroscopy, N(2) adsorption/desorption isotherms and scanning and transmission electron microscopy. The effects of pH, shaking time and temperature on adsorption capacity were studied. In the acidic pH region (pH 2.0), the adsorption of the dye was favourable using both adsorbents. The contact time to obtain equilibrium isotherms at 298-323 K was fixed at 4 hours for both adsorbents. The general order kinetic model provided the best fit to the experimental data compared with pseudo-first order and pseudo-second order kinetic adsorption models. For Reactive Blue 4 dye, the equilibrium data (298 to 323 K) were best fitted to the Liu isotherm model. The maximum sorption capacity for adsorption of the dye occurred at 323 K, attaining values of 502.5 and 567.7 mg g(-1) for MWCNT and SWCNT, respectively. Simulated dyehouse effluents were used to check the applicability of the proposed nanoadsorbents for effluent treatment (removal of 99.89% and 99.98%, for MWCNT and SWCNT, respectively). The interaction of Reactive Blue 4 textile dye with single-walled carbon nanotubes (SWCNTs) was investigated using first principles calculations based on density functional theory. Results from ab initio calculations indicated that Reactive Blue 4 textile dye could be adsorbed on SWCNT through an electrostatic interaction; these results are in agreement with the experimental predictions.

9.
Waste Manag Res ; 29(2): 172-9, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20406757

RESUMO

In the present study, glass foams made of ground soda-lime glass obtained from transparent glass bottles and dolomite were investigated. The objective of this paper was to evaluate the influence of the heating rate on the microstructure of the obtained material and on its properties. The technological characterization of the ceramic bodies involved the determination of the volumetric expansion and average diameter of the pore. The microstructure was investigated by optical microscopy and scanning electron microscopy. Experimental results showed that the heating rate influenced both the volumetric expansion and the average diameter of the pore. Lower heating rates resulted in lower volumetric expansions since more CO(2) escaped from within the ceramic body.


Assuntos
Vidro/química , Dióxido de Carbono , Microscopia Eletrônica de Varredura , Reciclagem , Temperatura
10.
Materials (Basel) ; 14(6)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808932

RESUMO

The present study introduces the analysis of single-lap co-cured joints of thermoplastic self-reinforced composites made with reprocessed low-density polyethylene (LDPE) and reinforced by ultra-high-molecular-weight polyethylene (UHMWPE) fibers, along with a micromechanical analysis of its constituents. A set of optimal processing conditions for manufacturing these joints by hot-press is proposed through a design of experiment using the response surface method to maximize their in-plane shear strength by carrying tensile tests on co-cured tapes. Optimal processing conditions were found at 1 bar, 115 °C, and 300 s, yielding joints with 6.88 MPa of shear strength. The shear failure is generally preceded by multiple debonding-induced longitudinal cracks both inside and outside the joint due to accumulated transversal stress. This composite demonstrated to be an interesting structural material to be more widely applied in industry, possessing extremely elevated specific mechanical properties, progressive damage of co-cured joints (thus avoiding unannounced catastrophic failures) and ultimate recyclability.

11.
Materials (Basel) ; 14(14)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34300904

RESUMO

This work aims to evaluate the effects of feldspar substitution by basalt on porcelain tile composition with respect to its porosity, flexural strength, and pyroplastic deformation. Three ceramic formulations with different amounts of feldspar substituted with basalt, 50% (C1), 75% (C2), and 100% (C3), were evaluated at three different temperatures, 1200, 1220, and 1240 °C. Specifically, the effect of replacing feldspar with basalt on the pyroplastic deformation of ceramic bodies was analysed using optical fleximetry. The porosity of C1 at 1200 °C was 19.3 ± 2.9%, while that of composition C3 was 22.2 ± 0.7% at 1240 °C. The flexural strength was strongly influenced by the temperature. For C1 at 1200 and 1240 °C, flexural strengths of 11.1 ± 0.6 and 22.2 ± 1.9 MPa, respectively, were obtained. Regarding fleximetry, thermal deformation decreased with an increase in the amount of feldspar substituted with basalt. It was observed that C2 and C3 deformed less at high temperatures than the other combinations of compositions and temperature, probably owing to the lower amount of residual glass phase present during cooling. Compositions with higher substitution amounts of basalt (i.e., C2 and C3) exhibited more stable thermal behaviour than C0.

12.
Sci Total Environ ; 766: 142474, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33071144

RESUMO

The objective of the present study was to develop a combined system composed of anaerobic biofilter (AF) and floating treatment wetlands (FTW) coupled with microbial fuel cells (MFC) in the buoyant support for treating wastewater from a university campus and generate bioelectricity. The raw wastewater was pumped to a 1450 L tank, operated in batch flow and filled with plastic conduits. The second treatment stage was composed of a 1000 L FTW box with a 200 L plastic drum inside (acting as settler in the entrance) and vegetated with mixed ornamental plants species floating in a polyurethane support fed once a week with 700 L of wastewater. In the plant roots, graphite rods were placed to act as cathodes, while on the bottom of the box 40 graphite sticks inside a plastic hose with a stainless-steel cable acting as the anode chamber. Open circuit voltages were daily measured for 6 weeks, and later as closed circuit with the connection of 1000 Ω resistors. Plant harvestings were conducted, in which biomass production and plant uptake from each of the species were measured. On average, system was efficient in reducing BOD5 (55.1%), COD (71.4%), turbidity (90.9%) and total coliforms (99.9%), but presented low efficiencies regarding total N (8.4%) and total P (11.4%). Concerning bioenergy generation, voltage peaks and maximum power density were observed on the feeding day, reaching 225 mV and 0.93 mW/m2, respectively, and in general decaying over the 7 days. In addition, plant species with larger root development presented higher voltage values than plants with the smaller root systems, possible because of oxygen release. Therefore, the combined system presented potential of treating wastewater and generating energy by integrating FTW and MFC, but further studies should investigate the FTW-MFC combination in order to improve its treatment performance and maximize energy generation.


Assuntos
Fontes de Energia Bioelétrica , Eletricidade , Eletrodos , Características da Família , Águas Residuárias , Áreas Alagadas
13.
Materials (Basel) ; 14(1)2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33375641

RESUMO

A study on the strength of ceramic fiber bundles based on experimental and computational procedures is presented. Tests were performed on single filaments and bundles composed of two fibers with different nominal fiber counts. A method based on fiber rupture signals was developed to estimate the amount of filament rupture during the test. Through this method, the fiber bundle true strength was determined and its variation with the initial fiber count observed. By using different load-sharing models and the single filament data as input parameter, simulations were also developed to verify this behavior. Through different approaches between experiments and simulations, it was noted that the fiber bundle true strength increased with the fiber count. Moreover, a variation of the fibers' final proportion in the bundles relative to the initial amount was verified in both approaches. Finally, discussions on the influence of different load-sharing models on the results are presented.

14.
J Biomed Mater Res B Appl Biomater ; 108(5): 1879-1887, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31809001

RESUMO

Magnetic Co3 O4 nanoparticles (NPs) have great potential for applications in biomedicine, as contrast enhancement agents for magnetic resonance imaging, or for drug delivery. Although these NPs are so attractive, their potential toxicity raises serious questions about decreasing cellular viability. In this context, Co3 O4 NPs were prepared via sol-gel method and encapsulated with a layer of TiO2 , a biocompatible oxide, and subjected to structural, magnetic and toxicity characterization. X-ray diffractograms of the samples demonstrate the successful synthesis of the spinel and Raman spectroscopy confirms the coating of the Co3 O4 spinel with TiO2 . The Co3 O4 cores showed a very intense superparamagnetic character; however, this behavior is strongly suppressed when the material is covered with TiO2 . According to the neutral red uptake assay, the coating of the cores with TiO2 significantly decreases the cytotoxic character of the Co3 O4 particles and, as it can be observed with the zeta (ξ) potential measurements, they form a stable colloidal dispersion at cytoplasmic pH. The effect of the thermal treatment enhances the biocompatibility even further, with no statistically significant effect on cell viability even at the highest analyzed concentration. The proposed pathway presents a successful sol-gel method for the preparation of Co3 O4 @TiO2 core-shell nanoparticles. This work opens up possibilities for future application of these materials not only for magnetic resonance imaging but also in catalysis and hyperthermia.


Assuntos
Materiais Revestidos Biocompatíveis/química , Cobalto/química , Nanopartículas Metálicas/química , Nanocompostos/química , Óxidos/química , Titânio/química , Animais , Linhagem Celular , Permeabilidade da Membrana Celular , Sobrevivência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/metabolismo , Cricetulus , Fibroblastos/citologia , Humanos , Magnetismo , Propriedades de Superfície , Titânio/metabolismo
15.
Polymers (Basel) ; 12(4)2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252272

RESUMO

This study aimed to evaluate the effect of needle-like zinc oxide nanostructures (ZnO-NN) on the physical, chemical, and antibacterial properties of experimental methacrylate-based dental sealers. ZnO-NN was synthesized and characterized. ZnO-NN was added to a co-monomer blend at 20, 30, and 40 wt.%. One group without ZnO-NN was used as a control. The dental resin sealers were evaluated for their flow, film thickness, water sorption, solubility, radiopacity, degree of conversion (DC), dental-sealer interface characterization via micro-Raman, and antibacterial activity. ZnO-NN presented a mean needle diameter of 40 nm and 16 m2/g of surface area. There was no difference among groups containing ZnO-NN regarding their flow. The ZnO-NN addition significantly increased the film thickness. Water sorption and solubility tests showed no difference among groups. The radiopacity increased, and DC decreased with higher concentrations of ZnO-NN. Micro-Raman suggested that ZnO-NN was in close contact with root canal dentin. Overall, the incorporation of ZnO-NN provided an antibacterial effect against Enterococcus faecalis without a significant detrimental impact on the physical and chemical functionality of the material. The use of ZnO-NN as an inorganic filler is a potential application within dental materials intended for root canal treatment.

16.
J Funct Biomater ; 11(1)2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32053986

RESUMO

The insufficient radiopacity of dental adhesives applied under composite restorations makes the radiographic diagnosis of recurrent caries challenging. Consequently, the misdiagnosis may lead to unnecessary replacement of restorations. The aims of this study were to formulate experimental dental adhesives containing cerium dioxide (CeO2) and investigate the effects of different loadings of CeO2 on their radiopacity and degree of conversion for the first time. CeO2 was characterized by X-ray diffraction analysis, Fourier transforms infrared spectroscopy, and laser diffraction for particle size analysis. Experimental dental adhesives were formulated with CeO2 as the inorganic filler with loadings ranging from 0.36 to 5.76 vol.%. The unfilled adhesive was used as a control. The studied adhesives were evaluated for dispersion of CeO2 in the polymerized samples, degree of conversion, and radiopacity. CeO2 presented a monoclinic crystalline phase, peaks related to Ce-O bonding, and an average particle size of around 16 µm. CeO2 was dispersed in the adhesive, and the addition of these particles increased the adhesives' radiopacity (p < 0.05). There was a significant decrease in the degree of conversion with CeO2 loadings higher than 1.44 vol.%. However, all materials showed a similar degree of conversion in comparison to commercially available adhesives. CeO2 particles were investigated for the first time as a promising compound to improve the radiopacity of the dental adhesives.

17.
Materials (Basel) ; 11(7)2018 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-29949860

RESUMO

The current investigation was conducted on gres porcelain stoneware, a robust, impermeable and aesthetically pleasing type of ceramic mainly used for flooring, characterizing its resistance to bending and low-velocity impact, both representative efforts to which flooring tiles are constantly subjected as a consequence of the fall of objects and microsubsidences. The mechanical characterization was made through experimental tests following an adapted low-velocity impact testing routine, and the model was by validated numerical simulation through the explicit code software LS-DYNA based on the Johnson⁻Holmquist constitutive material model. Specimens were tested before and after an annealing cycle industrially used to allow porcelain folding. The thermal treatment demonstrated to infer a decrease in mechanical resistance on the material, understood as a consequence of its elevated maximum temperature and fast cooling rate. The numerical model calibrated successfully allows predicting the behavior of gres porcelain before and after annealing against low-velocity impact.

18.
ACS Appl Mater Interfaces ; 8(25): 16444-50, 2016 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-27269125

RESUMO

The chemical inertness of carbon nanotubes (CNT) requires some degree of "defect engineering" for controlled deposition of metal oxides through atomic layer deposition (ALD). The type, quantity, and distribution of such defects rules the deposition rate and defines the growth behavior. In this work, we employed ALD to grow titanium oxide (TiO2) on vertically aligned carbon nanotubes (VACNT). The effects of nitrogen doping and oxygen plasma pretreatment of the CNT on the morphology and total amount of TiO2 were systematically studied using transmission electron microscopy, Raman spectroscopy, and thermogravimetric analysis. The induced chemical changes for each functionalization route were identified by X-ray photoelectron and Raman spectroscopies. The TiO2 mass fraction deposited with the same number of cycles for the pristine CNT, nitrogen-doped CNT, and plasma-treated CNT were 8, 47, and 80%, respectively. We demonstrate that TiO2 nucleation is dependent mainly on surface incorporation of heteroatoms and their distribution rather than structural defects that govern the growth behavior. Therefore, selecting the best way to functionalize CNT will allow us to tailor TiO2 distribution and hence fabricate complex heterostructures.

19.
Dental Press J Orthod ; 18(2): 76-80, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23916435

RESUMO

OBJECTIVE: To determine the shear bond strength of orthodontic brackets using color change adhesives that are supposed to aid in removing excess of bonding material and compare them to a traditional adhesive. METHODS: Ninety metallic and ninety ceramic brackets were bonded to bovine incisors using two color change adhesives and a regular one. A tensile stress was applied by a universal testing machine. The teeth were observed in a microscope after debonding in order to determine the Adhesive Remnant Index (ARI). RESULTS: The statistical analysis (ANOVA, Tukey, and Kruskall-Wallis tests) demonstrated that the mean bond strength presented no difference when metallic and ceramic brackets were compared, but the bond resistance values were significantly different for the three adhesives used. The most common ARI outcome was the entire adhesive remaining on the enamel. CONCLUSIONS: The bond strength was similar for metallic and ceramic brackets when the same adhesive system was used. ARI scores demonstrated that bonding with these adhesives is safe even when ceramic brackets were used. On the other hand, bond strength was too low for orthodontic purposes when Ortho Lite Cure was used.


Assuntos
Cerâmica/química , Ligas Dentárias/química , Cimentos Dentários/química , Esmalte Dentário/química , Braquetes Ortodônticos , Animais , Bovinos , Cor , Colagem Dentária/métodos , Descolagem Dentária/métodos , Análise do Estresse Dentário , Teste de Materiais , Resistência ao Cisalhamento , Resistência à Tração
20.
J Dent ; 41(2): 106-13, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22564371

RESUMO

OBJECTIVES: The purpose of this study was to develop an adhesive resin with incorporation of niobium pentoxide and evaluate its properties. METHODS: Niobium pentoxide was characterised by X-ray diffraction, surface area, particle size, micro-Raman, scanning electron microscopy and the effectiveness of silanisation process by Fourier Transform Infrared (FTIR). An experimental adhesive resin was formulated with 0, 5, 10 and 20wt% Nb(2)O(5). The formulated adhesive resins were evaluated based on microhardness, degree of conversion, radiopacity and interface (resin/dentine) characterisation by micro-Raman. RESULTS: The particles used in this study presented a monoclinic crystalline phase with typical chemical groups and micrometre mean size. Microhardness and radiopacity increased with higher amounts of Nb(2)O(5), and the particles were able to penetrate into the hybrid layers. CONCLUSIONS: Therefore, Nb(2)O(5) may be an alternative for polymer-based biomaterials. CLINICAL SIGNIFICANCE: Niobium pentoxide could be used to produce adhesive resins with enhanced properties.


Assuntos
Nióbio/química , Óxidos/química , Cimentos de Resina/química , Condicionamento Ácido do Dente/métodos , Animais , Bis-Fenol A-Glicidil Metacrilato/química , Cânfora/análogos & derivados , Cânfora/química , Bovinos , Meios de Contraste/química , Cristalografia , Colagem Dentária , Dentina/ultraestrutura , Dureza , Metacrilatos/química , Microscopia Eletrônica de Varredura , Microespectrofotometria , Tamanho da Partícula , Polietilenoglicóis/química , Polimerização , Ácidos Polimetacrílicos/química , Refratometria , Silanos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Propriedades de Superfície , Temperatura , Fatores de Tempo , Difração de Raios X , para-Aminobenzoatos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA