Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Behav Sci (Basel) ; 12(5)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35621425

RESUMO

Individuals with alcohol use disorder (AUD) may manifest an array of neural and behavioral abnormalities, including altered brain networks, impaired neurocognitive functioning, and heightened impulsivity. Using multidomain measures, the current study aimed to identify specific features that can differentiate individuals with AUD from healthy controls (CTL), utilizing a random forests (RF) classification model. Features included fMRI-based resting-state functional connectivity (rsFC) across the reward network, neuropsychological task performance, and behavioral impulsivity scores, collected from thirty abstinent adult males with prior history of AUD and thirty CTL individuals without a history of AUD. It was found that the RF model achieved a classification accuracy of 86.67% (AUC = 93%) and identified key features of FC and impulsivity that significantly contributed to classifying AUD from CTL individuals. Impulsivity scores were the topmost predictors, followed by twelve rsFC features involving seventeen key reward regions in the brain, such as the ventral tegmental area, nucleus accumbens, anterior insula, anterior cingulate cortex, and other cortical and subcortical structures. Individuals with AUD manifested significant differences in impulsivity and alterations in functional connectivity relative to controls. Specifically, AUD showed heightened impulsivity and hypoconnectivity in nine connections across 13 regions and hyperconnectivity in three connections involving six regions. Relative to controls, visuo-spatial short-term working memory was also found to be impaired in AUD. In conclusion, specific multidomain features of brain connectivity, impulsivity, and neuropsychological performance can be used in a machine learning framework to effectively classify AUD individuals from healthy controls.

2.
Brain Sci ; 10(2)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32093319

RESUMO

Individuals with alcohol use disorder (AUD) are known to manifest a variety of neurocognitive impairments that can be attributed to alterations in specific brain networks. The current study aims to identify specific features of brain connectivity, neuropsychological performance, and impulsivity traits that can classify adult males with AUD (n = 30) from healthy controls (CTL, n = 30) using the Random Forest (RF) classification method. The predictor variables were: (i) fMRI-based within-network functional connectivity (FC) of the Default Mode Network (DMN), (ii) neuropsychological scores from the Tower of London Test (TOLT), and the Visual Span Test (VST), and (iii) impulsivity factors from the Barratt Impulsiveness Scale (BIS). The RF model, with a classification accuracy of 76.67%, identified fourteen DMN connections, two neuropsychological variables (memory span and total correct scores of the forward condition of the VST), and all impulsivity factors as significantly important for classifying participants into either the AUD or CTL group. Specifically, the AUD group manifested hyperconnectivity across the bilateral anterior cingulate cortex and the prefrontal cortex as well as between the bilateral posterior cingulate cortex and the left inferior parietal lobule, while showing hypoconnectivity in long-range anterior-posterior and interhemispheric long-range connections. Individuals with AUD also showed poorer memory performance and increased impulsivity compared to CTL individuals. Furthermore, there were significant associations among FC, impulsivity, neuropsychological performance, and AUD status. These results confirm the previous findings that alterations in specific brain networks coupled with poor neuropsychological functioning and heightened impulsivity may characterize individuals with AUD, who can be efficiently identified using classification algorithms such as Random Forest.

3.
J Alzheimers Dis ; 55(1): 269-281, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27662309

RESUMO

BACKGROUND: Mild cognitive impairment (MCI) is a transitional stage from normal aging to Alzheimer's disease (AD) dementia. It is extremely important to develop criteria that can be used to separate the MCI subjects at imminent risk of conversion to Alzheimer-type dementia from those who would remain stable. We have developed an automatic algorithm for computing a novel measure of hippocampal volumetric integrity (HVI) from structural MRI scans that may be useful for this purpose. OBJECTIVE: To determine the utility of HVI in classification between stable and progressive MCI patients using the Random Forest classification algorithm. METHODS: We used a 16-dimensional feature space including bilateral HVI obtained from baseline and one-year follow-up structural MRI, cognitive tests, and genetic and demographic information to train a Random Forest classifier in a sample of 164 MCI subjects categorized into two groups [progressive (n = 86) or stable (n = 78)] based on future conversion (or lack thereof) of their diagnosis to probable AD. RESULTS: The overall accuracy of classification was estimated to be 82.3% (86.0% sensitivity, 78.2% specificity). The accuracy in women (89.1%) was considerably higher than that in men (78.9%). The prediction accuracy achieved in women is the highest reported in any previous application of machine learning to AD diagnosis in MCI. CONCLUSION: The method presented in this paper can be used to separate stable MCI patients from those who are at early stages of AD dementia with high accuracy. There may be stronger indicators of imminent AD dementia in women with MCI as compared to men.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Disfunção Cognitiva/classificação , Disfunção Cognitiva/diagnóstico por imagem , Hipocampo/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Progressão da Doença , Feminino , Seguimentos , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional , Estudos Longitudinais , Aprendizado de Máquina , Masculino , Testes Neuropsicológicos , Tamanho do Órgão , Reconhecimento Automatizado de Padrão , Prognóstico , Sensibilidade e Especificidade , Caracteres Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA