Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Haematologica ; 106(1): 220-229, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31974202

RESUMO

During infection neuraminidase desialylates platelets and induces their rapid clearance from circulation. The underlying molecular basis, particularly the role of platelet glycoprotein (GP)Ibα therein, is not clear. Utilizing genetically altered mice we report that the extracellular domain of GPIbα, but neither von Willebrand factor nor ADAM17 (a disintegrin and metalloprotease 17), is required for platelet clearance induced by intravenous injection of neuraminidase. Lectin binding to platelets following neuraminidase injection over time revealed that the extent of desialylation of O-glycans correlates with the decrease of platelet count in mice. Injection of α2,3-neuraminidase reduces platelet counts in wild-type but not in transgenic mice expressing only a chimeric GPIbα that misses most of its extracellular domain. Neuraminidase treatment induces unfolding of the O-glycosylated mechanosensory domain in GPIbα as monitored by single-molecule force spectroscopy, increases the exposure of the ADAM17 shedding cleavage site in the mechanosensory domain on the platelet surface, and induces ligand-independent GPIb-IX signaling in human and murine platelets. These results suggest that desialylation of O-glycans of GPIbα induces unfolding of the mechanosensory domain, subsequent GPIb-IX signaling including amplified desialylation of N-glycans, and eventually rapid platelet clearance. This new molecular mechanism of GPIbα-facilitated clearance could potentially resolve many puzzling and seemingly contradicting observations associated with clearance of desialylated or hyposialylated platelets.


Assuntos
Plaquetas , Complexo Glicoproteico GPIb-IX de Plaquetas , Animais , Camundongos , Contagem de Plaquetas , Polissacarídeos , Transdução de Sinais , Fator de von Willebrand
2.
Blood ; 126(7): 831-2, 2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26272047

RESUMO

In this issue of Blood, Liang and colleagues demonstrate that cartilage oligomeric matrix protein (COMP) acts as a major endogenous plasma- and platelet-derived inhibitor of thrombin activity in vitro and in vivo.


Assuntos
Antitrombinas/sangue , Proteína de Matriz Oligomérica de Cartilagem/sangue , Trombina/antagonistas & inibidores , Trombina/metabolismo , Animais , Masculino
3.
Arterioscler Thromb Vasc Biol ; 35(6): 1327-38, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25838432

RESUMO

An unresolved problem with clinical use of antiplatelet therapy is that a significant number of individuals either still get thrombosis or run the risk of life-threatening bleeding. Antiplatelet drugs are widely used clinically, either chronically for people at risk of athero/thrombotic disease or to prevent thrombus formation during surgery. However, a subpopulation may be resistant to standard doses, while the platelet targets of these drugs are also critical for the normal hemostatic function of platelets. In this review, we will briefly examine current antiplatelet therapy and existing targets while focusing on new potential approaches for antiplatelet therapy and improved monitoring of effects on platelet reactivity in individuals, ultimately to improve antithrombosis with minimal bleeding. Primary platelet adhesion-signaling receptors, glycoprotein (GP)Ib-IX-V and GPVI, that bind von Willebrand factor/collagen and other prothrombotic factors are not targeted by drugs in clinical use, but they are of particular interest because of their key role in thrombus formation at pathological shear.


Assuntos
Inibidores da Agregação Plaquetária/uso terapêutico , Trombose/prevenção & controle , Resistência a Medicamentos , Hemorragia/induzido quimicamente , Humanos , Ativação Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/efeitos adversos , Inibidores da Agregação Plaquetária/farmacologia , Fatores de Risco , Trombose/fisiopatologia
4.
Blood ; 132(19): 2002-2004, 2018 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-30409892
5.
Blood ; 121(22): 4586-94, 2013 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-23620575

RESUMO

Current antithrombotic drugs have an adverse effect on bleeding, highlighting the need for new molecular targets for developing antithrombotic drugs that minimally affect hemostasis. Here we show that LIMK1(-/-) mice have defective arterial thrombosis in vivo but do not differ from wild-type mice with respect to bleeding time. LIMK1(-/-) mice show a selective defect in platelet activation induced through the von Willebrand Factor (VWF) receptor, the glycoprotein Ib-IX-V complex (GPIb-IX), but not by GPIb-IX-independent platelet agonists. In fact, LIMK1(-/-) platelets show an enhanced reaction to certain GPIb-IX-independent agonists. The defect of LIMK1(-/-) platelets in GPIb-IX-mediated platelet activation is attributed to a selective inhibition in VWF/GPIb-IX-induced phosphorylation of cytosolic phospholipase A2 (cPLA2) and consequent thromboxane A2 (TXA2) production. Supplementing a TXA2 analog, U46619, corrected the defect of LIMK1(-/-) platelets in VWF-induced stable platelet adhesion. Although LIMK1(-/-) platelets also showed reduced actin polymerization after GPIb-IX-mediated platelet aggregation, actin polymerization inhibitors did not reduce TXA2 generation, but rather accelerated platelet aggregation, suggesting that the role of LIMK1 in GPIb-mediated platelet activation is independent of actin polymerization. Thus, LIMK1 plays a novel role in selectively mediating GPIb-IX-dependent TXA2 synthesis and thrombosis and represents a potential target for developing antithrombotic drugs with minimal bleeding side effect.


Assuntos
Quinases Lim/metabolismo , Ativação Plaquetária/fisiologia , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Trombose/metabolismo , Tromboxano A2/biossíntese , Fatores de Despolimerização de Actina/metabolismo , Actinas/metabolismo , Animais , Plaquetas/metabolismo , Adesão Celular/fisiologia , Desenho de Fármacos , Fibrinolíticos/metabolismo , Hemorragia/tratamento farmacológico , Hemorragia/metabolismo , Humanos , Quinases Lim/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Mecânico , Tromboxano A2/metabolismo , Fator de von Willebrand/metabolismo
6.
Platelets ; 26(3): 199-211, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24832135

RESUMO

Functionally, platelets are primarily recognized as key regulators of thrombosis and hemostasis. Upon vessel injury, the typically quiescent platelet interacts with subendothelial matrix to regulate platelet adhesion, activation and aggregation, with subsequent induction of the coagulation cascade forming a thrombus. Recently, however, newly described roles for platelets in the regulation of angiogenesis have emerged. Platelets possess an armory of pro- and anti-angiogenic proteins, which are actively sequestered and highly organized in α-granule populations. Platelet activation facilitates their release, eliciting potent angiogenic responses through mechanisms that appear to be tightly regulated. In conjunction, the release of platelet-derived phospholipids and microparticles has also earned merit as synergistic regulators of angiogenesis. Consequently, platelets have been functionally implicated in a range of angiogenesis-dependent processes, including physiological roles in wound healing, vascular development and blood/lymphatic vessel separation, whilst facilitating aberrant angiogenesis in a range of diseases including cancer, atherosclerosis and diabetic retinopathy. Whilst the underlying mechanisms are only starting to be elucidated, significant insights have been established, suggesting that platelets represent a promising therapeutic strategy in diseases requiring angiogenic modulation. Moreover, anti-platelet therapies targeting thrombotic complications also exert protective effects in disorders characterized by persistent angiogenesis.


Assuntos
Plaquetas/fisiologia , Neovascularização Patológica/etiologia , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica , Animais , Hemostasia , Humanos , Trombose/etiologia , Trombose/metabolismo
7.
Blood ; 119(18): 4311-20, 2012 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-22431567

RESUMO

Ligand-induced ectodomain shedding of glycoprotein VI (GPVI) is a metalloproteinase-dependent event. We examined whether shear force, in the absence of GPVI ligand, was sufficient to induce shedding of GPVI. Human-citrated platelet-rich plasma or washed platelets were subjected to increasing shear rates in a cone-plate viscometer, and levels of intact and cleaved GPVI were examined by Western blot and ELISA. Pathophysiologic shear rates (3000-10 000 seconds(-1)) induced platelet aggregation and metalloproteinase-dependent appearance of soluble GPVI ectodomain, and GPVI platelet remnant. Shedding of GPVI continued after transient exposure to shear. Blockade of α(IIb)ß(3), GPIbα, or intracellular signaling inhibited shear-induced platelet aggregation but minimally affected shear-induced shedding of GPVI. Shear-induced GPVI shedding also occurred in platelet-rich plasma or washed platelets isolated from a von Willebrand disease type 3 patient with no detectable VWF, implying that shear-induced activation of platelet metalloproteinases can occur in the absence of GPVI and GPIbα ligands. Significantly elevated levels of sGPVI were observed in 10 patients with stable angina pectoris, with well-defined single vessel coronary artery disease and mean intracoronary shear estimates at 2935 seconds(-1) (peak shear, 19 224 seconds(-1)). Loss of GPVI in platelets exposed to shear has potential implications for the stability of a forming thrombus at arterial shear rates.


Assuntos
Plaquetas/química , Estenose Coronária/sangue , Hemorreologia , Glicoproteínas da Membrana de Plaquetas/química , Estresse Mecânico , Proteínas ADAM/antagonistas & inibidores , Proteínas ADAM/fisiologia , Proteína ADAM10 , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/fisiologia , Angina Estável/sangue , Viscosidade Sanguínea , Colágeno/fisiologia , Estenose Coronária/genética , Dipeptídeos/farmacologia , Regulação para Baixo , Feminino , Humanos , Ácidos Hidroxâmicos/farmacologia , Glicoproteínas de Membrana/fisiologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/fisiologia , Pessoa de Meia-Idade , Agregação Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/fisiologia , Complexo Glicoproteico GPIb-IX de Plaquetas , Glicoproteínas da Membrana de Plaquetas/biossíntese , Glicoproteínas da Membrana de Plaquetas/genética , Plasma Rico em Plaquetas , Estrutura Terciária de Proteína , Doença de von Willebrand Tipo 3/sangue
8.
J Biol Chem ; 287(35): 30000-13, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-22773837

RESUMO

The platelet collagen receptor glycoprotein VI (GPVI) has been suggested to function as a dimer, with increased affinity for collagen. Dissociation constants (K(d)) obtained by measuring recombinant GPVI binding to collagenous substrates showed that GPVI dimers bind with high affinity to tandem GPO (Gly-Pro-Hyp) sequences in collagen, whereas the markedly lower affinity of the monomer for all substrates implies that it is not the collagen-binding form of GPVI. Dimer binding required a high density of immobilized triple-helical (GPO)(10)-containing peptide, suggesting that the dimer binds multiple, discrete peptide helices. Differential inhibition of dimer binding by dimer-specific antibodies, m-Fab-F and 204-11 Fab, suggests that m-Fab-F binds at the collagen-binding site of the dimer, and 204-11 Fab binds to a discrete site. Flow cytometric quantitation indicated that GPVI dimers account for ~29% of total GPVI in resting platelets, whereas activation by either collagen-related peptide or thrombin increases the number of dimers to ~39 and ~44%, respectively. m-Fab-F inhibits both GPVI-dependent static platelet adhesion to collagen and thrombus formation on collagen under low and high shear, indicating that pre-existing dimeric GPVI is required for the initial interaction with collagen because affinity of the monomer is too low to support binding and that interaction through the dimer is essential for platelet activation. These GPVI dimers in resting circulating platelets will enable them to bind injury-exposed subendothelial collagen to initiate platelet activation. The GPVI-specific agonist collagen-related peptide or thrombin further increases the number of dimers, thereby providing a feedback mechanism for reinforcing binding to collagen and platelet activation.


Assuntos
Colágeno/farmacologia , Peptídeos/farmacologia , Ativação Plaquetária/efeitos dos fármacos , Glicoproteínas da Membrana de Plaquetas/agonistas , Glicoproteínas da Membrana de Plaquetas/metabolismo , Multimerização Proteica/efeitos dos fármacos , Velocidade do Fluxo Sanguíneo , Humanos , Fragmentos Fab das Imunoglobulinas , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Trombina/farmacologia
9.
Semin Thromb Hemost ; 39(6): 656-62, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23929303

RESUMO

Bernard-Soulier syndrome (BSS) is a rare inherited platelet bleeding disorder characterized by low platelet count and abnormally large platelets (macrothrombocytopenia). Platelets from BSS patients are typically defective in surface expression of glycoprotein (GP)Ib-IX-V, a platelet-specific adhesion-signaling complex, composed of GPIbα disulfide linked to GPIbß, and noncovalently associated with GPIX and GPV. The major ligand-binding subunit, GPIbα, binds the adhesive ligands von Willebrand factor (VWF) or thrombospondin, counterreceptors on activated endothelial cells (P-selectin) or activated leukocytes (integrin αMß2), and coagulation factors (thrombin, factors XI and XII, high-molecular-weight kininogen). The cytoplasmic domain of GPIb-IX-V interacts with the cytoskeletal protein, filamin-A via a binding site within the GPIbα cytoplasmic tail, and with structural-signaling proteins including calmodulin, 14-3-3ζ and the p85 subunit of phosphoinositide 3-kinase. GPIbα is physically/functionally co-associated on the platelet surface with the major platelet collagen receptor, GPVI. As such, it is easy to see how genetic defects impacting GPIb-IX-V expression or function can have significant consequences on normal platelet size, adhesion to VWF/collagen and/or stable thrombus formation, and why BSS is often associated with clinical bleeding. Furthermore, the rarity, multiple genetic causes, and variable clinical phenotype of BSS can complicate routine diagnosis. Here, we discuss how studies of BSS have contributed to platelet biology and recent studies to improve diagnosis and treatment.


Assuntos
Síndrome de Bernard-Soulier/genética , Plaquetas/metabolismo , Mutação , Complexo Glicoproteico GPIb-IX de Plaquetas/genética , Animais , Síndrome de Bernard-Soulier/diagnóstico , Síndrome de Bernard-Soulier/terapia , Terapia Genética/métodos , Hemorragia/genética , Hemorragia/prevenção & controle , Humanos , Adesividade Plaquetária/genética , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
11.
Blood ; 117(14): 3912-20, 2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21252089

RESUMO

This study evaluated shedding of the platelet collagen receptor, glycoprotein VI (GPVI) in human plasma. Collagen or other ligands induce metalloproteinase-mediated GPVI ectodomain shedding, generating approximately 55-kDa soluble GPVI (sGPVI) and approximately 10-kDa platelet-associated fragments. In the absence of GPVI ligands, coagulation of platelet-rich plasma from healthy persons induced GPVI shedding, independent of added tissue factor, but inhibitable by metalloproteinase inhibitor, GM6001. Factor Xa (FXa) common to intrinsic and tissue factor-mediated coagulation pathways was critical for sGPVI release because (1) shedding was strongly blocked by the FXa-selective inhibitor rivaroxaban but not FIIa (thrombin) inhibitors dabigatran or hirudin; (2) Russell viper venom that directly activates FX generated sGPVI, with complete inhibition by enoxaparin (inhibits FXa and FIIa) but not hirudin; (3) impaired GPVI shedding during coagulation of washed platelets resuspended in FX-depleted plasma was restored by adding purified FX; and (4) purified FXa induced GM6001-inhibitable GPVI shedding from washed platelets. In 29 patients with disseminated intravascular coagulation, mean plasma sGPVI was 53.9 ng/mL (95% confidence interval, 39.9-72.8 ng/mL) compared with 12.5 ng/mL (95% confidence interval, 9.0-17.3 ng/mL) in thrombocytopenic controls (n = 36, P < .0001), and 14.6 ng/mL (95% confidence interval, 7.9-27.1 ng/mL) in healthy subjects (n = 25, P = .002). In conclusion, coagulation-induced GPVI shedding via FXa down-regulates GPVI under procoagulant conditions. FXa inhibitors have an unexpected role in preventing GPVI down-regulation.


Assuntos
Coagulação Sanguínea/fisiologia , Plaquetas/metabolismo , Fator Xa/fisiologia , Glicoproteínas da Membrana de Plaquetas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Coagulação Sanguínea/efeitos dos fármacos , Testes de Coagulação Sanguínea , Plaquetas/efeitos dos fármacos , Coagulação Intravascular Disseminada/sangue , Coagulação Intravascular Disseminada/metabolismo , Coagulação Intravascular Disseminada/patologia , Enoxaparina/farmacologia , Fator Xa/metabolismo , Feminino , Fibrinolíticos/farmacologia , Hirudinas/farmacologia , Humanos , Técnicas In Vitro , Masculino , Metaloproteases/metabolismo , Pessoa de Meia-Idade , Trombina/farmacologia
12.
Blood ; 117(9): 2718-27, 2011 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-21156842

RESUMO

Platelets have evolved a highly specialized membrane skeleton that provides stability to the plasma membrane and facilitates adhesion under high shear stress. The cytoskeletal anchorage of glycoprotein (GP) Ibα plays an important role in regulating the membrane skeleton. However, its role in regulating membrane stability remains unknown. To investigate this role, we have developed a new mouse model that expresses wild-type human GPIbα (hGPIbα(WT)), or a mutant form of human GPIbα that has a selective defect in its ability to bind filamin A and anchor to the membrane skeleton (hGPIbα(FW)-Phe568Ala and Trp570Ala substitutions). Our study demonstrates that the link between platelet GPIb and the cytoskeleton does not alter the intrinsic ligand binding function of GPIbα or the ability of the receptor to stimulate integrin α(IIb)ß(3)-dependent spreading. However, exposure of hGPIbα(FW) platelets to pathologic shear rate levels (5000 to 40,000 s(-1)) leads to the development of unstable membrane tethers, defective platelet adhesion, and loss of membrane integrity, leading to complete disintegration of the platelet cell body. These outcomes suggest that the GPIbα-filamin A interaction not only regulates the architecture of the membrane skeleton, but also maintains the mechanical stability of the plasma membrane under conditions of high shear.


Assuntos
Plaquetas/citologia , Membrana Celular/metabolismo , Proteínas Contráteis/metabolismo , Proteínas dos Microfilamentos/metabolismo , Adesividade Plaquetária , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Estresse Mecânico , Animais , Plaquetas/efeitos dos fármacos , Caspases/metabolismo , Membrana Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proteínas do Citoesqueleto/metabolismo , Filaminas , Humanos , Proteínas Imobilizadas/farmacologia , Camundongos , Camundongos Transgênicos , Modelos Animais , Proteínas Mutantes/metabolismo , Adesividade Plaquetária/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Fator de von Willebrand/farmacologia
13.
Arterioscler Thromb Vasc Biol ; 32(11): 2761-8, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22995516

RESUMO

OBJECTIVE: The platelet receptor for von Willebrand factor, the glycoprotein Ib-IX (GPIb-IX) complex, mediates platelet adhesion at sites of vascular injury and transmits signals leading to platelet activation. von Willebrand factor/GPIb-IX interaction sequentially activates the Src family kinase Lyn (SFK), phosphoinositide 3-kinase (PI3K), and Akt, leading to activation of integrin α(IIb)ß(3) and integrin-dependent stable platelet adhesion and aggregation. It remains unclear how Lyn activates the PI3K/Akt pathway after ligand binding to GPIb-IX. METHODS AND RESULTS: Using platelet-specific Rac1(-/-) mice and the Rac1 inhibitor NSC23766, we examined the role of Rac1 in GPIb-IX-dependent platelet activation. Rac1(-/-) mouse platelets and NSC23766-treated human platelets were defective in GPIb-dependent stable adhesion to von Willebrand factor under shear stress, integrin activation, thromboxane A(2) synthesis, and platelet aggregation. Interestingly, GPIb-induced activation of Rac1 and the guanine nucleotide exchange factor for Rac1, Vav, was abolished in both Lyn(-/-) and SFK inhibitor-treated platelets but was unaffected by the PI3K inhibitor LY294002, indicating that Lyn mediates activation of Vav and Rac1 independently of PI3K. Furthermore, GPIb-induced activation of Akt was abolished in Rac1-deficient platelets, suggesting that Rac1 is upstream of the PI3K/Akt pathway. CONCLUSIONS: A Lyn-Vav-Rac1-PI3K-Akt pathway mediates von Willebrand factor-induced activation of integrin α(IIb)ß(3) to promote GPIb-IX-dependent platelet activation.


Assuntos
Plaquetas/metabolismo , Neuropeptídeos/metabolismo , Adesividade Plaquetária , Agregação Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Transdução de Sinais , Proteínas rac de Ligação ao GTP/metabolismo , Animais , Plaquetas/efeitos dos fármacos , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Humanos , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuropeptídeos/antagonistas & inibidores , Neuropeptídeos/deficiência , Neuropeptídeos/genética , Fosfatidilinositol 3-Quinase/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Adesividade Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-vav/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tromboxano A2/metabolismo , Fatores de Tempo , Proteínas rac de Ligação ao GTP/antagonistas & inibidores , Proteínas rac de Ligação ao GTP/deficiência , Proteínas rac de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/genética , Quinases da Família src/metabolismo , Fator de von Willebrand/metabolismo
14.
Arterioscler Thromb Vasc Biol ; 32(7): 1724-31, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22539596

RESUMO

OBJECTIVE: Thrombosis occurs at sites of vascular injury when platelets adhere to subendothelial matrix proteins and to each other. Platelets express many surface receptor proteins, the function of several of these remains poorly characterized. Cadherin 6 is expressed on the platelet surface and contains an arginine-glycine-aspartic acid motif, suggesting that it might have a supportive role in thrombus formation. The aim of this study was to characterize the role of cadherin 6 in platelet function. METHODS AND RESULTS: Platelet aggregation was inhibited by both antibodies and exogenous soluble cadherin 6. Platelet adhesion to immobilized cadherin 6 was inhibited by arginine-glycine-aspartic acid-serine tetrapeptides. Antibodies to α(IIb)ß(3) inhibited platelet adhesion to cadherin 6. Because platelet aggregation occurs in fibrinogen and von Willebrand factor double-deficient mice, we investigated whether cadherin 6 is an alternative ligand for the integrin α(IIb)ß(3). Platelet aggregation in fibrinogen and von Willebrand factor double-deficient mice was significantly inhibited by an antibody to cadherin 6. In flow-based assays, inhibition of cadherin 6 caused a marked reduction in thrombus formation in both human and mouse blood. CONCLUSIONS: This study demonstrates the role of cadherin 6 as a novel ligand for α(IIb)ß(3) and highlights its function in thrombus formation.


Assuntos
Plaquetas/fisiologia , Caderinas/fisiologia , Agregação Plaquetária , Trombose/etiologia , Sequência de Aminoácidos , Animais , Plaquetas/citologia , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Oligopeptídeos/fisiologia , Adesividade Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo
15.
Acta Haematol ; 128(4): 233-41, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22922528

RESUMO

INTRODUCTION: Ligands acting at the platelet collagen receptor, glycoprotein (GP)VI, induce intracellular FcRγ/Syk-dependent signaling pathways and Syk-dependent or Syk-independent generation of intracellular reactive oxygen species (ROS). Additional signaling-dependent or signaling-independent pathways lead to metalloproteinase-mediated shedding of GPVI. AIM: Analysis of platelet GPVI expression and signaling in a patient with a collagen-selective defect associated with myelodysplastic syndrome (MDS) uniquely demonstrates divergent pathways leading to ROS generation and Syk phosphorylation in human platelets. METHODS: Surface expression of GPVI and ligand-induced ROS generation was quantitated by flow cytometry. GPVI shedding and Syk phosphorylation were analyzed by Western blot. RESULTS: Despite platelet count/size and GPVI surface expression within normal ranges, platelet-rich plasma showed no aggregation in response to collagen or GPVI-selective agonist collagen-related peptide, but aggregated in response to other agonists, consistent with dysfunctional GPVI signaling. We observed rapid GPVI-dependent Syk-independent ROS generation and disulfide-dependent GPVI homodimerization, but not Syk-dependent ROS or ligand-induced shedding. Temporal analysis showed a gradual decline in platelet count and the appearance of ligand-induced phosphorylation of an ∼40-kDa Syk fragment. CONCLUSIONS: These studies show that GPVI ligation in platelets induces intracellular ROS production independent of either Syk activation or divergent pathways leading to platelet aggregation or ectodomain shedding.


Assuntos
Síndromes Mielodisplásicas/fisiopatologia , Glicoproteínas da Membrana de Plaquetas/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Receptores de Colágeno/fisiologia , Transdução de Sinais/fisiologia , Idoso , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ligantes , Proteínas Tirosina Quinases/metabolismo , Quinase Syk
16.
J Biol Chem ; 285(16): 11793-9, 2010 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-20164177

RESUMO

Nerve growth factor (NGF) plays an important role in regulating mammalian neuronal/embryonic development, angiogenesis, and other physiological processes and has recently been investigated as a potential treatment for the neurodegenerative disorder, Alzheimer disease. In this study, we provide evidence that human NGF may also function as a metalloproteinase inhibitor, based on studies of NGF from snake venom. Originally, our aim was to isolate snake venom metalloproteinases targeting platelet receptors and/or ligands relevant to hemostasis and thrombosis, using Ni(2+)-agarose as a purification step based on the conserved metal ion-coordination motif in venom metalloproteinases. However, subsequent analysis of cobra (Naja kaouthia) venom led to the unexpected discovery that cobra venom NGF bound to Ni(2+)-agarose, eluting at approximately 15 mm imidazole, enabling a one-step purification. The identity of the purified protein was confirmed by mass spectrometry and N-terminal sequence analysis. Partial co-purification of NGF within metalloproteinase-enriched venom fractions led us to test whether NGF affected metalloproteinase activity. Venom NGF potently inhibited metalloproteinases isolated from the same or different venom and specifically bound to purified Nk metalloproteinase immobilized on agarose beads. Human NGF also interacted with human metalloproteinases because it blocked metalloproteinase-mediated shedding of the platelet collagen receptor, glycoprotein (GP)VI, and associated with recombinant ADAM10 by surface plasmon resonance. Together, these results suggest that NGF can function as a metalloproteinase inhibitor.


Assuntos
Desintegrinas/antagonistas & inibidores , Metaloproteases/antagonistas & inibidores , Fator de Crescimento Neural/farmacologia , Glicoproteínas da Membrana de Plaquetas/metabolismo , Sequência de Aminoácidos , Animais , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Cromatografia em Agarose , Venenos Elapídicos/química , Venenos Elapídicos/genética , Venenos Elapídicos/farmacologia , Humanos , Técnicas In Vitro , Dados de Sequência Molecular , Fator de Crescimento Neural/genética , Fator de Crescimento Neural/isolamento & purificação , Níquel , Homologia de Sequência de Aminoácidos , Ressonância de Plasmônio de Superfície
17.
J Biol Chem ; 285(42): 32096-104, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20716526

RESUMO

Ectodomain shedding of transmembrane proteins may be regulated by their cytoplasmic domains. To date, the effecting cytoplasmic domain and the shed extracellular domain have been in the same polypeptide. In this study, shedding of GPIbα, the ligand-binding subunit of the platelet GPIb-IX complex and a marker for platelet senescence and storage lesion, was assessed in Chinese hamster ovary cells with/without functional GPIbα sheddase ADAM17. Mutagenesis of the GPIb-IX complex, which contains GPIbα, GPIbß, and GPIX subunits, revealed that the intracellular membrane-proximal calmodulin-binding region of GPIbß is critical for ADAM17-dependent shedding of GPIbα induced by the calmodulin inhibitor, W7. Perturbing the interaction between GPIbα and GPIbß subunits further lessened the restraint of GPIbß on GPIbα shedding. However, contrary to the widely accepted model of calmodulin regulation of ectodomain shedding, the R152E/L153E mutation in the GPIbß cytoplasmic domain disrupted calmodulin binding to GPIbß but had little effect on GPIbα shedding. Analysis of induction of GPIbα shedding by membrane-permeable GPIbß-derived peptides implicated the association of GPIbß with an unidentified intracellular protein in mediating regulation of GPIbα shedding. Overall, these results provide evidence for a novel trans-subunit mechanism for regulating ectodomain shedding.


Assuntos
Complexo Glicoproteico GPIb-IX de Plaquetas/química , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Subunidades Proteicas/metabolismo , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Proteína ADAM17 , Sequência de Aminoácidos , Animais , Plaquetas/metabolismo , Células CHO , Calmodulina/genética , Calmodulina/metabolismo , Membrana Celular/química , Cricetinae , Cricetulus , Humanos , Mutagênese , Complexo Glicoproteico GPIb-IX de Plaquetas/genética , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética
18.
Stroke ; 42(2): 498-500, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21193745

RESUMO

BACKGROUND AND PURPOSE: Ischemic stroke induced by thrombosis may be triggered by atherosclerotic plaque rupture and collagen-induced platelet activation. Collagen induces glycoprotein VI shedding. METHODS: We measured plasma-soluble glycoprotein VI (sGPVI) by enzyme-linked immunosorbent assay in 159 patients with acute (<7-day) ischemic stroke and age/sex-matched community-based control subjects. RESULTS: sGPVI was elevated in stroke compared with controls (P=0.0168). ORs were higher in Quartile 4 for stroke cases (P=0.0121), and sGPVI was significantly elevated in stroke associated with large artery disease across Quartiles 2 to 4 and small artery disease in Quartile 4. sGPVI decreased 3 to 6 months after antiplatelet treatment, consistent with elevated sGPVI due to platelet activation during the thrombotic event. sGPVI correlated with P-selectin (P=0.0007) and was higher in individuals with the GPVIa haplotype (P=0.024). CONCLUSIONS: Glycoprotein VI shedding is implicated in the pathology of acute ischemic stroke.


Assuntos
Isquemia Encefálica/sangue , Isquemia Encefálica/etiologia , Glicoproteínas da Membrana de Plaquetas/metabolismo , Acidente Vascular Cerebral/sangue , Acidente Vascular Cerebral/etiologia , Doença Aguda , Idoso , Aterosclerose/sangue , Aterosclerose/complicações , Aterosclerose/patologia , Biomarcadores/sangue , Isquemia Encefálica/patologia , Estudos de Coortes , Feminino , Humanos , Masculino , Solubilidade , Acidente Vascular Cerebral/patologia
19.
J Clin Invest ; 118(9): 3009-11, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18725992

RESUMO

The interaction of circulating platelets with the vessel wall involves a process of cell catch and release, regulating cell rolling, skipping, or firm adhesion and leading to thrombus formation in flowing blood. In this regard, the interaction of platelet glycoprotein Ibalpha (GPIbalpha) with its adhesive ligand, vWF, is activated by shear force and critical for platelet adhesion to the vessel wall. In this issue of the JCI, Yago and colleagues show how gain-of-function mutations in the GPIbalpha-binding vWF A1 domain disrupt intramolecular interactions within WT vWF A1 that regulate binding to GPIbalpha and flow-enhanced platelet rolling and adhesion (see the related article beginning on page 3195). Together, these studies reveal molecular mechanisms regulating GPIbalpha-vWF bond formation and platelet adhesion under shear stress.


Assuntos
Plaquetas/metabolismo , Adesividade Plaquetária/fisiologia , Animais , Adesão Celular , Humanos , Ligantes , Glicoproteínas de Membrana , Proteínas de Membrana/metabolismo , Modelos Biológicos , Mutação , Complexo Glicoproteico GPIb-IX de Plaquetas , Glicoproteínas da Membrana de Plaquetas/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Estresse Mecânico , Trombose/metabolismo , Fator de von Willebrand/metabolismo
20.
Nat Commun ; 12(1): 2360, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33883551

RESUMO

Von Willebrand factor (VWF) activates in response to shear flow to initiate hemostasis, while aberrant activation could lead to thrombosis. Above a critical shear force, the A1 domain of VWF becomes activated and captures platelets via the GPIb-IX complex. Here we show that the shear-responsive element controlling VWF activation resides in the discontinuous autoinhibitory module (AIM) flanking A1. Application of tensile force in a single-molecule setting induces cooperative unfolding of the AIM to expose A1. The AIM-unfolding force is lowered by truncating either N- or C-terminal AIM region, type 2B VWD mutations, or binding of a ristocetin-mimicking monoclonal antibody, all of which could activate A1. Furthermore, the AIM is mechanically stabilized by the nanobody that comprises caplacizumab, the only FDA-approved anti-thrombotic drug to-date that targets VWF. Thus, the AIM is a mechano-regulator of VWF activity. Its conformational dynamics may define the extent of VWF autoinhibition and subsequent activation under force.


Assuntos
Fator de von Willebrand/química , Fator de von Willebrand/metabolismo , Anticorpos Monoclonais/farmacologia , Fenômenos Biomecânicos , Cristalografia por Raios X , Humanos , Técnicas In Vitro , Modelos Moleculares , Mutação , Agregação Plaquetária/efeitos dos fármacos , Conformação Proteica , Domínios Proteicos , Estabilidade Proteica , Desdobramento de Proteína , Ristocetina/farmacologia , Imagem Individual de Molécula , Anticorpos de Domínio Único/farmacologia , Resistência à Tração , Fator de von Willebrand/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA