Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Neurosci ; 19(11): RC9, 1999 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-10341270

RESUMO

Neurotransmitter transporters function in synaptic signaling in part through the sequestration and removal of neurotransmitter from the synaptic cleft. A recurring theme of transporters is that many can be functionally regulated by protein kinase C (PKC); some of this regulation occurs via a redistribution of the transporter protein between the plasma membrane and the cytoplasm. The endogenous triggers that lead to PKC-mediated transporter redistribution have not been elucidated. G-protein-coupled receptors that activate PKC are likely candidates to initiate transporter redistribution. We tested this hypothesis by examining the rat brain GABA transporter GAT1 endogenously expressed in hippocampal neurons. Specific agonists of G-protein-coupled acetylcholine, glutamate, and serotonin receptors downregulate GAT1 function. This functional inhibition is dose-dependent, mimicked by PKC activators, and prevented by specific receptor antagonists and PKC inhibitors. Surface biotinylation experiments show that the receptor-mediated functional inhibition correlates with a redistribution of GAT1 from the plasma membrane to intracellular locations. These data demonstrate (1) that endogenous GAT1 function can be regulated by PKC via subcellular redistribution, and (2) that signaling via several different G-protein-coupled receptors can mediate this effect. These results raise the possibility that some effects of G-protein-mediated alterations in synaptic signaling might occur through changes in the number of transporters expressed on the plasma membrane and subsequent effects on synaptic neurotransmitter levels.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ligação ao GTP/fisiologia , Hipocampo/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Transportadores de Ânions Orgânicos , Proteína Quinase C/fisiologia , Receptores de Neurotransmissores/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Transporte Biológico , Biotinilação , Western Blotting , Membrana Celular/metabolismo , Células Cultivadas , Regulação para Baixo , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Proteínas da Membrana Plasmática de Transporte de GABA , Hipocampo/citologia , Líquido Intracelular/metabolismo , Neurônios/metabolismo , Neurônios/ultraestrutura , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Ratos , Receptores de Glutamato/efeitos dos fármacos , Receptores de Glutamato/fisiologia , Receptores Muscarínicos/efeitos dos fármacos , Receptores Muscarínicos/fisiologia , Receptores de Neurotransmissores/efeitos dos fármacos , Receptores de Serotonina/efeitos dos fármacos , Receptores de Serotonina/fisiologia
2.
J Nerv Ment Dis ; 174(12): 727-35, 1986 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-3783140

RESUMO

Dissociation is a lack of the normal integration of thoughts, feelings, and experiences into the stream of consciousness and memory. Dissociation occurs to some degree in normal individuals and is thought to be more prevalent in persons with major mental illnesses. The Dissociative Experiences Scale (DES) has been developed to offer a means of reliably measuring dissociation in normal and clinical populations. Scale items were developed using clinical data and interviews, scales involving memory loss, and consultations with experts in dissociation. Pilot testing was performed to refine the wording and format of the scale. The scale is a 28-item self-report questionnaire. Subjects were asked to make slashes on 100-mm lines to indicate where they fall on a continuum for each question. In addition, demographic information (age, sex, occupation, and level of education) was collected so that the connection between these variables and scale scores could be examined. The mean of all item scores ranges from 0 to 100 and is called the DES score. The scale was administered to between 10 and 39 subjects in each of the following populations: normal adults, late adolescent college students, and persons suffering from alcoholism, agoraphobia, phobic-anxious disorders, posttraumatic stress disorder, schizophrenia, and multiple personality disorder. Reliability testing of the scale showed that the scale had good test-retest and good split-half reliability. Item-scale score correlations were all significant, indicating good internal consistency and construct validity. A Kruskal-Wallis test and post hoc comparisons of the scores of the eight populations provided evidence of the scale's criterion-referenced validity.(ABSTRACT TRUNCATED AT 250 WORDS)


Assuntos
Transtornos Dissociativos/diagnóstico , Inventário de Personalidade , Adolescente , Adulto , Fatores Etários , Transtornos Dissociativos/psicologia , Transtorno Dissociativo de Identidade/diagnóstico , Transtorno Dissociativo de Identidade/psicologia , Escolaridade , Feminino , Humanos , Masculino , Transtornos Mentais/diagnóstico , Transtornos Mentais/psicologia , Psicometria , Fatores Sexuais , Inquéritos e Questionários
3.
J Biol Chem ; 274(2): 889-95, 1999 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-9873028

RESUMO

gamma-Aminobutyric acid (GABA) transporters on neurons and glia at or near the synapse function to remove GABA from the synaptic cleft. Recent evidence suggests that GABA transporter function can be regulated, although the initial triggers for such regulation are not known. One hypothesis is that transporter function is modulated by extracellular GABA concentration, thus providing a feedback mechanism for the control of neurotransmitter levels at the synapse. To test this hypothesis, GABA uptake assays were performed on primary dissociated rat hippocampal cultures that endogenously express GABA transporters and on mammalian cells stably expressing the cloned rat brain GABA transporter GAT1. In both experimental systems, extracellular GABA induces chronic changes in GABA transport that occur in a dose-dependent and time-dependent manner. In addition to GABA, ACHC and nipecotic acid, both substrates of GAT1, up-regulate transport; GAT1 transport inhibitors that are not transporter substrates down-regulate transport. These changes occur in the presence of blockers of both GABAA and GABAB receptors, occur in the presence of protein synthesis inhibitors, and are not influenced by intracellular GABA. Surface biotinylation experiments reveal that the increase in transport is correlated with an increase in surface transporter expression. This increase in surface expression is due, at least in part, to a slowing of GAT1 internalization in the presence of extracellular GABA. These data suggest that the GABA transporter fine-tunes its function in response to extracellular GABA and would act to maintain a constant level of neurotransmitter at the synaptic cleft.


Assuntos
Proteínas de Transporte/metabolismo , Hipocampo/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Transportadores de Ânions Orgânicos , Ácido gama-Aminobutírico/metabolismo , Animais , Células CHO , Proteínas de Transporte/agonistas , Proteínas de Transporte/antagonistas & inibidores , Células Cultivadas , Cricetinae , Endocitose , Proteínas da Membrana Plasmática de Transporte de GABA , Hipocampo/citologia , Proteínas de Membrana/agonistas , Proteínas de Membrana/antagonistas & inibidores , Ratos
4.
J Neurosci ; 18(16): 6103-12, 1998 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-9698305

RESUMO

Syntaxin 1A inhibits GABA uptake of an endogenous GABA transporter in neuronal cultures from rat hippocampus and in reconstitution systems expressing the cloned rat brain GABA transporter GAT1. Evidence of interactions between syntaxin 1A and GAT1 comes from three experimental approaches: botulinum toxin cleavage of syntaxin 1A, syntaxin 1A antisense treatments, and coimmunoprecipitation of a complex containing GAT1 and syntaxin 1A. Protein kinase C (PKC), shown previously to modulate GABA transporter function, exerts its modulatory effects by regulating the availability of syntaxin 1A to interact with the transporter, and a transporter mutant that fails to interact with syntaxin 1A is not regulated by PKC. These results suggest a new target for regulation by syntaxin 1A and a novel mechanism for controlling the machinery involved in both neurotransmitter release and reuptake.


Assuntos
Antígenos de Superfície/fisiologia , Proteínas de Transporte/fisiologia , Proteínas de Membrana/fisiologia , Proteínas de Membrana Transportadoras , Proteínas do Tecido Nervoso/fisiologia , Transportadores de Ânions Orgânicos , Proteína Quinase C/fisiologia , Animais , Toxinas Botulínicas/farmacologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas da Membrana Plasmática de Transporte de GABA , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação/fisiologia , Células PC12/efeitos dos fármacos , Células PC12/metabolismo , Ratos , Canais de Sódio/fisiologia , Sintaxina 1
5.
Cell ; 91(6): 753-63, 1997 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-9413985

RESUMO

The mutations responsible for several human neurodegenerative disorders are expansions of translated CAG repeats beyond a normal size range. To address the role of repeat context, we have introduced a 146-unit CAG repeat into the mouse hypoxanthine phosphoribosyltransferase gene (Hprt). Mutant mice express a form of the HPRT protein that contains a long polyglutamine repeat. These mice develop a phenotype similar to the human translated CAG repeat disorders. Repeat containing mice show a late onset neurological phenotype that progresses to premature death. Neuronal intranuclear inclusions are present in affected mice. Our results show that CAG repeats do not need to be located within one of the classic repeat disorder genes to have a neurotoxic effect.


Assuntos
Encéfalo/patologia , Hipoxantina Fosforribosiltransferase/genética , Camundongos Mutantes Neurológicos/genética , Repetições de Trinucleotídeos , Animais , Encéfalo/enzimologia , Núcleo Celular/enzimologia , Núcleo Celular/patologia , Núcleo Celular/ultraestrutura , Cruzamentos Genéticos , Éxons , Feminino , Homozigoto , Humanos , Hipoxantina Fosforribosiltransferase/análise , Hipoxantina Fosforribosiltransferase/deficiência , Corpos de Inclusão/enzimologia , Corpos de Inclusão/patologia , Corpos de Inclusão/ultraestrutura , Masculino , Camundongos , Peptídeos , Fenótipo , Ubiquitinas/análise
6.
Appl Opt ; 15(8): 1899-900, 1976 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20165290
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA