Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Nat Methods ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649742

RESUMO

Automated detection of specific cells in three-dimensional datasets such as whole-brain light-sheet image stacks is challenging. Here, we present DELiVR, a virtual reality-trained deep-learning pipeline for detecting c-Fos+ cells as markers for neuronal activity in cleared mouse brains. Virtual reality annotation substantially accelerated training data generation, enabling DELiVR to outperform state-of-the-art cell-segmenting approaches. Our pipeline is available in a user-friendly Docker container that runs with a standalone Fiji plugin. DELiVR features a comprehensive toolkit for data visualization and can be customized to other cell types of interest, as we did here for microglia somata, using Fiji for dataset-specific training. We applied DELiVR to investigate cancer-related brain activity, unveiling an activation pattern that distinguishes weight-stable cancer from cancers associated with weight loss. Overall, DELiVR is a robust deep-learning tool that does not require advanced coding skills to analyze whole-brain imaging data in health and disease.

2.
EMBO Rep ; 24(10): e55981, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37560809

RESUMO

Accumulation of excess nutrients hampers proper liver function and is linked to nonalcoholic fatty liver disease (NAFLD) in obesity. However, the signals responsible for an impaired adaptation of hepatocytes to obesogenic dietary cues remain still largely unknown. Post-translational modification by the small ubiquitin-like modifier (SUMO) allows for a dynamic regulation of numerous processes including transcriptional reprogramming. We demonstrate that specific SUMOylation of transcription factor Prox1 represents a nutrient-sensitive determinant of hepatic fasting metabolism. Prox1 is highly SUMOylated on lysine 556 in the liver of ad libitum and refed mice, while this modification is abolished upon fasting. In the context of diet-induced obesity, Prox1 SUMOylation becomes less sensitive to fasting cues. The hepatocyte-selective knock-in of a SUMOylation-deficient Prox1 mutant into mice fed a high-fat/high-fructose diet leads to a reduction of systemic cholesterol levels, associated with the induction of liver bile acid detoxifying pathways during fasting. The generation of tools to maintain the nutrient-sensitive SUMO-switch on Prox1 may thus contribute to the development of "fasting-based" approaches for the preservation of metabolic health.

3.
Mol Ther ; 31(8): 2408-2421, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37408309

RESUMO

Cancer cachexia is a severe systemic wasting disease that negatively affects quality of life and survival in patients with cancer. To date, treating cancer cachexia is still a major unmet clinical need. We recently discovered the destabilization of the AMP-activated protein kinase (AMPK) complex in adipose tissue as a key event in cachexia-related adipose tissue dysfunction and developed an adeno-associated virus (AAV)-based approach to prevent AMPK degradation and prolong cachexia-free survival. Here, we show the development and optimization of a prototypic peptide, Pen-X-ACIP, where the AMPK-stabilizing peptide ACIP is fused to the cell-penetrating peptide moiety penetratin via a propargylic glycine linker to enable late-stage functionalization using click chemistry. Pen-X-ACIP was efficiently taken up by adipocytes, inhibited lipolysis, and restored AMPK signaling. Tissue uptake assays showed a favorable uptake profile into adipose tissue upon intraperitoneal injection. Systemic delivery of Pen-X-ACIP into tumor-bearing animals prevented the progression of cancer cachexia without affecting tumor growth and preserved body weight and adipose tissue mass with no discernable side effects in other peripheral organs, thereby achieving proof of concept. As Pen-X-ACIP also exerted its anti-lipolytic activity in human adipocytes, it now provides a promising platform for further (pre)clinical development toward a novel, first-in-class approach against cancer cachexia.


Assuntos
Proteínas Quinases Ativadas por AMP , Neoplasias , Animais , Humanos , Tecido Adiposo/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Caquexia/tratamento farmacológico , Caquexia/etiologia , Caquexia/metabolismo , Neoplasias/complicações , Neoplasias/metabolismo , Peptídeos/farmacologia , Preparações Farmacêuticas/metabolismo , Qualidade de Vida
4.
Cancer Metastasis Rev ; 41(3): 517-547, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36074318

RESUMO

Obesity is an established risk factor for several human cancers. Given the association between excess body weight and cancer, the increasing rates of obesity worldwide are worrisome. A variety of obesity-related factors has been implicated in cancer initiation, progression, and response to therapy. These factors include circulating nutritional factors, hormones, and cytokines, causing hyperinsulinemia, inflammation, and adipose tissue dysfunction. The impact of these conditions on cancer development and progression has been the focus of extensive literature. In this review, we concentrate on processes that can link obesity and cancer, and which provide a novel perspective: extracellular matrix remodeling, angiogenesis, and adrenergic signaling. We describe molecular mechanisms involved in these processes, which represent putative targets for intervention. Liver, pancreas, and breast cancers were chosen as exemplary disease models. In view of the expanding epidemic of obesity, a better understanding of the tumorigenic process in obese individuals might lead to more effective treatments and preventive measures.


Assuntos
Adrenérgicos , Neoplasias , Tecido Adiposo , Matriz Extracelular , Humanos , Neoplasias/epidemiologia , Obesidade/complicações
5.
EMBO J ; 34(3): 344-60, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25510864

RESUMO

In mammals, glucocorticoids (GCs) and their intracellular receptor, the glucocorticoid receptor (GR), represent critical checkpoints in the endocrine control of energy homeostasis. Indeed, aberrant GC action is linked to severe metabolic stress conditions as seen in Cushing's syndrome, GC therapy and certain components of the Metabolic Syndrome, including obesity and insulin resistance. Here, we identify the hepatic induction of the mammalian conserved microRNA (miR)-379/410 genomic cluster as a key component of GC/GR-driven metabolic dysfunction. Particularly, miR-379 was up-regulated in mouse models of hyperglucocorticoidemia and obesity as well as human liver in a GC/GR-dependent manner. Hepatocyte-specific silencing of miR-379 substantially reduced circulating very-low-density lipoprotein (VLDL)-associated triglyceride (TG) levels in healthy mice and normalized aberrant lipid profiles in metabolically challenged animals, mediated through miR-379 effects on key receptors in hepatic TG re-uptake. As hepatic miR-379 levels were also correlated with GC and TG levels in human obese patients, the identification of a GC/GR-controlled miRNA cluster not only defines a novel layer of hormone-dependent metabolic control but also paves the way to alternative miRNA-based therapeutic approaches in metabolic dysfunction.


Assuntos
Glucocorticoides/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , MicroRNAs/metabolismo , Obesidade/metabolismo , Animais , Linhagem Celular , Feminino , Inativação Gênica , Glucocorticoides/genética , Humanos , Lipoproteínas VLDL/genética , Lipoproteínas VLDL/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Obesos , MicroRNAs/genética , Obesidade/genética , Triglicerídeos/genética , Triglicerídeos/metabolismo
6.
PLoS Genet ; 11(10): e1005561, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26440364

RESUMO

In mammals, the liver plays a central role in maintaining carbohydrate and lipid homeostasis by acting both as a major source and a major sink of glucose and lipids. In particular, when dietary carbohydrates are in excess, the liver converts them to lipids via de novo lipogenesis. The molecular checkpoints regulating the balance between carbohydrate and lipid homeostasis, however, are not fully understood. Here we identify PPP2R5C, a regulatory subunit of PP2A, as a novel modulator of liver metabolism in postprandial physiology. Inactivation of PPP2R5C in isolated hepatocytes leads to increased glucose uptake and increased de novo lipogenesis. These phenotypes are reiterated in vivo, where hepatocyte specific PPP2R5C knockdown yields mice with improved systemic glucose tolerance and insulin sensitivity, but elevated circulating triglyceride levels. We show that modulation of PPP2R5C levels leads to alterations in AMPK and SREBP-1 activity. We find that hepatic levels of PPP2R5C are elevated in human diabetic patients, and correlate with obesity and insulin resistance in these subjects. In sum, our data suggest that hepatic PPP2R5C represents an important factor in the functional wiring of energy metabolism and the maintenance of a metabolically healthy state.


Assuntos
Metabolismo Energético/genética , Metabolismo dos Lipídeos/genética , Obesidade/genética , Proteína Fosfatase 2/genética , Proteínas Quinases Ativadas por AMP/genética , Animais , Carboidratos da Dieta/metabolismo , Glucose/metabolismo , Hepatócitos/metabolismo , Humanos , Resistência à Insulina/genética , Lipogênese/genética , Fígado/metabolismo , Camundongos , Obesidade/patologia , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
7.
J Magn Reson Imaging ; 45(2): 369-380, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27421080

RESUMO

PURPOSE: To evaluate the volume and changes of human brown adipose tissue (BAT) in vivo following exposure to cold using magnetic resonance imaging (MRI). MATERIALS AND METHODS: The clavicular region of 10 healthy volunteers was examined with a 3T MRI system. One volunteer participated twice. A cooling vest that was circulated with temperature-controlled water was used to expose each volunteer to a cold environment. Three different water temperature phases were employed: baseline (23°C, 20 min), cooling (12°C, 90 min), and a final warming phase (37°C, 30 min). Temperatures of the water in the circuit, of the body, and at the back skin of the volunteers were monitored with fiberoptic temperature probes. Applying the 2-point DIXON pulse sequence every 5 minutes, fat fraction (FF) maps were determined and evaluated over time to distinguish between brown and white adipose tissue. RESULTS: Temperature measurements showed a decrease of 3.8 ± 1.0°C of the back skin temperature, while the body temperature stayed constant at 37.2 ± 0.9°C. Focusing on the two interscapular BAT depots, a mean FF decrease of -2.9 ± 2.0%/h (P < 0.001) was detected during cold stimulation in a mean absolute volume of 1.31 ± 1.43 ml. Also, a correlation of FF decrease to back skin temperature decrease was observed in all volunteers (correlation coefficients: |r| = [0.51; 0.99]). CONCLUSION: We found that FF decreases in BAT begin immediately with mild cooling of the body and continue during long-time cooling. LEVEL OF EVIDENCE: 2 J. Magn. Reson. Imaging 2017;45:369-380.


Assuntos
Tecido Adiposo Marrom/anatomia & histologia , Tecido Adiposo Marrom/fisiologia , Adiposidade/fisiologia , Temperatura Baixa , Resposta ao Choque Frio/fisiologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Algoritmos , Temperatura Corporal/fisiologia , Feminino , Humanos , Aumento da Imagem/métodos , Masculino , Tamanho do Órgão , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
8.
Recent Results Cancer Res ; 208: 219-242, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27909910

RESUMO

Multiple epidemiological studies demonstrated that overweight and obesity significantly increase the risk of several types of cancer. As the prevalence of obesity is dramatically rising, it is expected that it will represent one of the major lifestyle-associated risk factors for cancer development in the near future. Numerous recent studies expanded knowledge about key players and pathways, which are deregulated in the obese state and potentially promote cancer initiation, progression and aggressiveness via remote and local effects. These players include (but are not limited to) insulin/IGF, adipokines and inflammatory signaling molecules as well as metabolites. Nevertheless, the detailed mechanisms linking obesity and malignant transformation at the systemic, cellular and molecular level still demand further investigation. Additionally, dysfunctional molecular metabolic pathways appear to be specific for distinct cancer entities, thereby yet precluding definition of a common principle. This chapter will present an overview of the current knowledge of molecular nodes linking obesity and cancer and will briefly touch upon potential therapy options addressing metabolic cancer etiologies.


Assuntos
Adipocinas/metabolismo , Tecido Adiposo/metabolismo , Biomarcadores Tumorais/metabolismo , Transformação Celular Neoplásica/metabolismo , Neoplasias/etiologia , Obesidade/complicações , Tecido Adiposo/fisiopatologia , Adiposidade , Animais , Transformação Celular Neoplásica/patologia , Metabolismo Energético , Microbioma Gastrointestinal , Humanos , Mediadores da Inflamação/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Obesidade/metabolismo , Obesidade/fisiopatologia , Fatores de Risco , Transdução de Sinais
9.
Nat Cancer ; 4(11): 1544-1560, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37749321

RESUMO

Cachexia is a major cause of morbidity and mortality in individuals with cancer and is characterized by weight loss due to adipose and muscle tissue wasting. Hallmarks of white adipose tissue (WAT) remodeling, which often precedes weight loss, are impaired lipid storage, inflammation and eventually fibrosis. Tissue wasting occurs in response to tumor-secreted factors. Considering that the continuous endothelium in WAT is the first line of contact with circulating factors, we postulated whether the endothelium itself may orchestrate tissue remodeling. Here, we show using human and mouse cancer models that during precachexia, tumors overactivate Notch1 signaling in distant WAT endothelium. Sustained endothelial Notch1 signaling induces a WAT wasting phenotype in male mice through excessive retinoic acid production. Pharmacological blockade of retinoic acid signaling was sufficient to inhibit WAT wasting in a mouse cancer cachexia model. This demonstrates that cancer manipulates the endothelium at distant sites to mediate WAT wasting by altering angiocrine signals.


Assuntos
Tecido Adiposo Branco , Caquexia , Neoplasias , Receptor Notch1 , Animais , Humanos , Masculino , Camundongos , Tecido Adiposo Branco/patologia , Caquexia/patologia , Neoplasias/complicações , Transdução de Sinais , Tretinoína , Receptor Notch1/metabolismo
10.
PLoS Genet ; 5(7): e1000541, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19578398

RESUMO

Polygenic type 2 diabetes in mouse models is associated with obesity and results from a combination of adipogenic and diabetogenic alleles. Here we report the identification of a candidate gene for the diabetogenic effect of a QTL (Nidd/SJL, Nidd1) contributed by the SJL, NON, and NZB strains in outcross populations with New Zealand Obese (NZO) mice. A critical interval of distal chromosome 4 (2.1 Mbp) conferring the diabetic phenotype was identified by interval-specific congenic introgression of SJL into diabetes-resistant C57BL/6J, and subsequent reporter cross with NZO. Analysis of the 10 genes in the critical interval by sequencing, qRT-PCR, and RACE-PCR revealed a striking allelic variance of Zfp69 encoding zinc finger domain transcription factor 69. In NZO and C57BL/6J, a retrotransposon (IAPLTR1a) in intron 3 disrupted the gene by formation of a truncated mRNA that lacked the coding sequence for the KRAB (Krüppel-associated box) and Znf-C2H2 domains of Zfp69, whereas the diabetogenic SJL, NON, and NZB alleles generated a normal mRNA. When combined with the B6.V-Lep(ob) background, the diabetogenic Zfp69(SJL) allele produced hyperglycaemia, reduced gonadal fat, and increased plasma and liver triglycerides. mRNA levels of the human orthologue of Zfp69, ZNF642, were significantly increased in adipose tissue from patients with type 2 diabetes. We conclude that Zfp69 is the most likely candidate for the diabetogenic effect of Nidd/SJL, and that retrotransposon IAPLTR1a contributes substantially to the genetic heterogeneity of mouse strains. Expression of the transcription factor in adipose tissue may play a role in the pathogenesis of type 2 diabetes.


Assuntos
Clonagem Molecular , Diabetes Mellitus Tipo 2/genética , Obesidade/genética , Locos de Características Quantitativas , Fatores de Transcrição/genética , Tecido Adiposo/metabolismo , Animais , Mapeamento Cromossômico , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Camundongos Transgênicos , Obesidade/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Dedos de Zinco
11.
Adv Sci (Weinh) ; 9(29): e2104291, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36031387

RESUMO

Aberrant energy metabolism and cell cycle regulation both critically contribute to malignant cell growth and both processes represent targets for anticancer therapy. It is shown here that depletion of the AAA+-ATPase thyroid hormone receptor interacting protein 13 (Trip13) results in mitotic cell death through a combined mechanism linking lipid metabolism to aberrant mitosis. Diminished Trip13 levels in hepatocellular carcinoma cells result in insulin-receptor-/Akt-pathway-dependent accumulation of lipid droplets, which act as functional acentriolar microtubule organizing centers disturbing mitotic spindle polarity. Specifically, the lipid-droplet-coating protein perilipin 2 (Plin2) is required for multipolar spindle formation, induction of DNA damage, and mitotic cell death. Plin2 expression in different tumor cells confers susceptibility to cell death induced by Trip13 depletion as well as treatment with paclitaxel, a spindle-interfering drug commonly used against different cancers. Thus, assessment of Plin2 levels enables the stratification of tumor responsiveness to mitosis-targeting drugs, including clinically approved paclitaxel and Trip13 inhibitors currently under development.


Assuntos
Insulinas , Neoplasias Hepáticas , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Ciclo Celular/metabolismo , Morte Celular , Humanos , Insulinas/metabolismo , Lipídeos , Proteínas Mad2/metabolismo , Paclitaxel/farmacologia , Perilipina-2 , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo
12.
Clin Cancer Res ; 28(5): 1038-1052, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34965946

RESUMO

PURPOSE: The genetic relatedness between primary and recurrent head and neck squamous cell carcinomas (HNSCC) reflects the extent of heterogeneity and therapy-driven selection of tumor subpopulations. Yet, current treatment of recurrent HNSCC ignores the molecular characteristics of therapy-resistant tumor populations. EXPERIMENTAL DESIGN: From 150 tumors, 74 primary HNSCCs were RNA sequenced and 38 matched primary/recurrent tumor pairs were both whole-exome and RNA sequenced. Transcriptome analysis determined the predominant classical (CL), basal (BA), and inflamed-mesenchymal (IMS) transcriptional subtypes according to an established classification. Genomic alterations and clonal compositions of tumors were evaluated from whole-exome data. RESULTS: Although CL and IMS subtypes were more common in primary HNSCC with low recurrence rates, the BA subtype was more prevalent and stable in recurrent tumors. The BA subtype was associated with a transcriptional signature of partial epithelial-to-mesenchymal transition (p-EMT) and early recurrence. In 44% of matched cases, the dominant subtype changed from primary to recurrent tumors, preferably from IMS to BA or CL. Expression analysis of prognostic gene sets identified upregulation of hypoxia, p-emt, and radiotherapy resistance signatures and downregulation of tumor inflammation in recurrences compared with index tumors. A relevant subset of primary/recurrent tumor pairs presented no evidence for a common clonal origin. CONCLUSIONS: Our study showed a high degree of genetic and transcriptional heterogeneity between primary/recurrent tumors, suggesting therapy-related selection of a transcriptional subtype with characteristics unfavorable for therapy. We conclude that therapy decisions should be based on genetic and transcriptional characteristics of recurrences rather than primary tumors to enable optimally tailored treatment strategies.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Neoplasias de Cabeça e Pescoço/genética , Humanos , Recidiva Local de Neoplasia/genética , RNA , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
13.
Cell Metab ; 4(5): 339-40, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17084708

RESUMO

Aberrant hepatic gluconeogenesis contributes importantly to hyperglycemia in type II diabetic patients. A study by Pei et al. (2006b) identifies NR4A orphan nuclear receptors as a novel branch of cAMP-dependent regulators of hepatic glucose production under healthy and diabetic conditions.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Diabetes Mellitus Tipo 2/metabolismo , Glucose/biossíntese , Fígado/metabolismo , Receptores Citoplasmáticos e Nucleares/fisiologia , Receptores de Esteroides/fisiologia , Fatores de Transcrição/fisiologia , Humanos , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares
14.
EJNMMI Res ; 11(1): 94, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34557972

RESUMO

Cachexia, a multifactorial wasting syndrome, is highly prevalent among advanced-stage cancer patients. Unlike weight loss in healthy humans, the progressive loss of body weight in cancer cachexia primarily implicates lean body mass, caused by an aberrant metabolism and systemic inflammation. This may lead to disease aggravation, poorer quality of life, and increased mortality. Timely detection is, therefore, crucial, as is the careful monitoring of cancer progression, in an effort to improve management, facilitate individual treatment and minimize disease complications. A detailed analysis of body composition and tissue changes using imaging modalities-that is, computed tomography, magnetic resonance imaging, (18F) fluoro-2-deoxy-D-glucose (18FDG) PET and dual-energy X-ray absorptiometry-shows great premise for charting the course of cachexia. Quantitative and qualitative changes to adipose tissue, organs, and muscle compartments, particularly of the trunk and extremities, could present important biomarkers for phenotyping cachexia and determining its onset in patients. In this review, we present and compare the imaging techniques that have been used in the setting of cancer cachexia. Their individual limitations, drawbacks in the face of clinical routine care, and relevance in oncology are also discussed.

15.
Cancers (Basel) ; 14(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35008253

RESUMO

BACKGROUND: Cancer is primarily a disease of high age in humans, yet most mouse studies on cancer cachexia are conducted using young adolescent mice. Given that metabolism and muscle function change with age, we hypothesized that aging may affect cachexia progression in mouse models. METHODS: We compare tumor and cachexia development in young and old mice of three different strains (C57BL/6J, C57BL/6N, BALB/c) and with two different tumor cell lines (Lewis Lung Cancer, Colon26). Tumor size, body and organ weights, fiber cross-sectional area, circulating cachexia biomarkers, and molecular markers of muscle atrophy and adipose tissue wasting are shown. We correlate inflammatory markers and body weight dependent on age in patients with cancer. RESULTS: We note fundamental differences between mouse strains. Aging aggravates weight loss in LLC-injected C57BL/6J mice, drives it in C57BL/6N mice, and does not influence weight loss in C26-injected BALB/c mice. Glucose tolerance is unchanged in cachectic young and old mice. The stress marker GDF15 is elevated in cachectic BALB/c mice independent of age and increased in old C57BL/6N and J mice. Inflammatory markers correlate significantly with weight loss only in young mice and patients. CONCLUSIONS: Aging affects cachexia development and progression in mice in a strain-dependent manner and influences the inflammatory profile in both mice and patients. Age is an important factor to consider for future cachexia studies.

16.
J Cachexia Sarcopenia Muscle ; 12(5): 1333-1351, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34427055

RESUMO

BACKGROUND: Cancer cachexia (CCx) is a multifactorial wasting disorder characterized by involuntary loss of body weight that affects many cancer patients and implies a poor prognosis, reducing both tolerance to and efficiency of anticancer therapies. Actual challenges in management of CCx remain in the identification of tumour-derived and host-derived mediators involved in systemic inflammation and tissue wasting and in the discovery of biomarkers that would allow for an earlier and personalized care of cancer patients. The aim of this study was to identify new markers of CCx across different species and tumour entities. METHODS: Quantitative secretome analysis was performed to identify specific factors characteristic of cachexia-inducing cancer cell lines. To establish the subsequently identified phospholipase PLA2G7 as a marker of CCx, plasma PLA2G7 activity and/or protein levels were measured in well-established mouse models of CCx and in different cohorts of weight-stable and weight-losing cancer patients with different tumour entities. Genetic PLA2G7 knock-down in tumours and pharmacological treatment using the well-studied PLA2G7 inhibitor darapladib were performed to assess its implication in the pathogenesis of CCx in C26 tumour-bearing mice. RESULTS: High expression and secretion of PLA2G7 were hallmarks of cachexia-inducing cancer cell lines. Circulating PLA2G7 activity was increased in different mouse models of CCx with various tumour entities and was associated with the severity of body wasting. Circulating PLA2G7 levels gradually rose during cachexia development. Genetic PLA2G7 knock-down in C26 tumours only partially reduced plasma PLA2G7 levels, suggesting that the host is also an important contributor. Chronic treatment with darapladib was not sufficient to counteract inflammation and tissue wasting despite a strong inhibition of the circulating PLA2G7 activity. Importantly, PLA2G7 levels were also increased in colorectal and pancreatic cancer patients with CCx. CONCLUSIONS: Overall, our data show that despite no immediate pathogenic role, at least when targeted as a single entity, PLA2G7 is a consistent marker of CCx in both mice and humans. The early increase in circulating PLA2G7 levels in pre-cachectic mice supports future prospective studies to assess its potential as biomarker for cancer patients.


Assuntos
Caquexia , Neoplasias Pancreáticas , 1-Alquil-2-acetilglicerofosfocolina Esterase , Animais , Benzaldeídos , Biomarcadores , Caquexia/tratamento farmacológico , Caquexia/etiologia , Humanos , Camundongos , Oximas , Estudos Prospectivos
17.
EMBO Mol Med ; 13(4): e12461, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33665961

RESUMO

By accentuating drug efficacy and impeding resistance mechanisms, combinatorial, multi-agent therapies have emerged as key approaches in the treatment of complex diseases, most notably cancer. Using high-throughput drug screens, we uncovered distinct metabolic vulnerabilities and thereby identified drug combinations synergistically causing a starvation-like lethal catabolic response in tumor cells from different cancer entities. Domperidone, a dopamine receptor antagonist, as well as several tricyclic antidepressants (TCAs), including imipramine, induced cancer cell death in combination with the mitochondrial uncoupler niclosamide ethanolamine (NEN) through activation of the integrated stress response pathway and the catabolic CLEAR network. Using transcriptome and metabolome analyses, we characterized a combinatorial response, mainly driven by the transcription factors CHOP and TFE3, which resulted in cell death through enhanced pyrimidine catabolism as well as reduced pyrimidine synthesis. Remarkably, the drug combinations sensitized human organoid cultures to the standard-of-care chemotherapy paclitaxel. Thus, our combinatorial approach could be clinically implemented into established treatment regimen, which would be further facilitated by the advantages of drug repurposing.


Assuntos
Antineoplásicos , Neoplasias , Morte Celular , Humanos , Niclosamida , Pirimidinas
18.
Hepatology ; 50(6): 1963-71, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19821526

RESUMO

UNLABELLED: In mammals, proper maintenance of blood glucose levels within narrow limits is one of the most critical prerequisites for healthy energy homeostasis and body function. Consequently, hyper- and hypoglycemia represent hallmarks of severe metabolic pathologies, including type II diabetes and acute sepsis, respectively. Although the liver plays a crucial role in the control of systemic glucose homeostasis, the molecular mechanisms of aberrant hepatic glucose regulation under metabolic stress conditions remain largely unknown. Here we report the development of a liver-specific adenoviral in vivo system for monitoring promoter activity of the key gluconeogenic enzyme gene phosphoenolpyruvate carboxykinase (PEPCK) in mice. By employing in vivo promoter deletion technology, the glucocorticoid response unit (GRU) and the cyclic adenosine monophosphate (cAMP)-responsive element (CRE) were identified as critical cis-regulatory targets of proinflammatory signaling under septic conditions. In particular, both elements were found to be required for inhibition of PEPCK transcription during sepsis, thereby mediating endotoxic hypoglycemia. Indeed, expression of nuclear receptor cofactor peroxisome proliferator-activator receptor coactivator 1alpha (PGC-1alpha), the molecular mediator of GRU/CRE synergism on the PEPCK promoter, was found to be specifically repressed in septic liver, and restoration of PGC-1alpha in cytokine-exposed hepatocytes blunted the inhibitory effect of proinflammatory signaling on PEPCK gene expression. CONCLUSION: The dysregulation of hormonal synergism through the repression of PGC-1alpha as identified by in vivo promoter monitoring may provide a molecular rationale for hypoglycemia during sepsis, thereby highlighting the importance of hepatic glucose homeostasis for metabolic dysfunction in these patients.


Assuntos
Inflamação/etiologia , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Regiões Promotoras Genéticas , Sepse/metabolismo , Animais , Células Cultivadas , AMP Cíclico/fisiologia , Glucocorticoides/fisiologia , Glucose/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , RNA Mensageiro/análise , Elementos de Resposta , Transdução de Sinais , Transativadores/fisiologia , Fatores de Transcrição
19.
Blood ; 112(2): 264-76, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18469200

RESUMO

Inflammatory responses represent a hallmark of numerous pathologies including sepsis, bacterial infection, insulin resistance, and malign obesity. Here we describe an unexpected coactivator function for the nuclear receptor interacting protein 140 (RIP140) for nuclear factor kappaB (NFkappaB), a master transcriptional regulator of inflammation in multiple tissues. Previous work has shown that RIP140 suppresses the expression of metabolic gene networks, but we have found that genetic as well as acute deficiency of RIP140 leads to the inhibition of the proinflammatory program in macrophages. The ability of RIP140 to function as a coactivator for cytokine gene promoter activity relies on direct protein-protein interactions with the NFkappaB subunit RelA and histone acetylase cAMP-responsive element binding protein (CREB)-binding protein (CBP). RIP140-dependent control of proinflammatory gene expression via RelA/CBP may, therefore, represent a molecular rational for the cellular integration of metabolic and inflammatory pathways.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína de Ligação a CREB/metabolismo , Citocinas/genética , Regulação da Expressão Gênica/imunologia , NF-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Fator de Transcrição RelA/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Humanos , Inflamação/genética , Camundongos , Camundongos Knockout , NF-kappa B/imunologia , Proteína 1 de Interação com Receptor Nuclear , Ligação Proteica/imunologia , Fator de Transcrição RelA/imunologia
20.
J Cachexia Sarcopenia Muscle ; 11(6): 1459-1475, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33090732

RESUMO

BACKGROUND: Cancer cachexia (CCx) is a multifactorial energy-wasting syndrome reducing the efficiency of anti-cancer therapies, quality of life, and survival of cancer patients. In the past years, most studies focused on the identification of tumour and host-derived proteins contributing to CCx. However, there is still a lack of studies addressing the changes in bioactive lipids. The aim of this study was to identify specific lipid species as a hallmark of CCx by performing a broad range lipid analysis of plasma from well-established CCx mouse models as well as cachectic and weight stable cancer patients. METHODS: Plasma from non-cachectic (PBS-injected mice, NC26 tumour-bearing mice), pre-cachectic and cachectic mice (C26 and LLC tumour-bearing mice, ApcMin/+ mutant mice), and plasma from weight stable and cachectic patients with gastrointestinal cancer, were analysed using the Lipidyzer™ platform. In total, 13 lipid classes and more than 1100 lipid species, including sphingolipids, neutral and polar glycerolipids, were covered by the analysis. Correlation analysis between specific lipid species and readouts of CCx were performed. Lipidomics data were confirmed by gene expression analysis of metabolic organs to analyse enzymes involved in sphingolipid synthesis and degradation. RESULTS: A decrease in several lysophosphatidylcholine (LPC) species and an increase in numerous sphingolipids including sphingomyelins (SMs), ceramides (CERs), hexosyl-ceramides (HCERs) and lactosyl-ceramides (LCERs), were mutual features of CCx in both mice and cancer patients. Notably, sphingolipid levels gradually increased during cachexia development. Key enzymes involved in ceramide synthesis were elevated in liver but not in adipose, muscle, or tumour tissues, suggesting that ceramide turnover in the liver is a major contributor to elevated sphingolipid levels in CCx. LPC(16:1), LPC(20:3), SM(16:0), SM(24:1), CER(16:0), CER(24:1), HCER(16:0), and HCER(24:1) were the most consistently affected lipid species between mice and humans and correlated negatively (LPCs) or positively (SMs, CERs and HCERs) with the severity of body weight loss. CONCLUSIONS: High levels of sphingolipids, specifically ceramides and modified ceramides, are a defining feature of murine and human CCx and may contribute to tissue wasting and skeletal muscle atrophy through the inhibition of anabolic signals. The progressive increase in sphingolipids during cachexia development supports their potential as early biomarkers for CCx.


Assuntos
Caquexia , Ceramidas , Neoplasias , Animais , Caquexia/etiologia , Ceramidas/metabolismo , Humanos , Camundongos , Atrofia Muscular , Neoplasias/complicações , Qualidade de Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA